亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study

城市化 大都市区 风暴潮 环境科学 大洪水 气候变化 洪水(心理学) 自然灾害 代表性浓度途径 沿海洪水 土地利用 水资源管理 环境资源管理 地理 自然地理学 气候学 风暴 气候模式 气象学 土木工程 海平面上升 工程类 海洋学 经济增长 经济 考古 心理学 地质学 心理治疗师
作者
Weibin Lin,Yimin Sun,Steffen Nijhuis,Zhaoli Wang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:739: 139899-139899 被引量:197
标识
DOI:10.1016/j.scitotenv.2020.139899
摘要

Preparing cities for sea-level rise is one of the critical challenges of the twenty-first century. Extreme weather events, natural hazards, and the failure of climate mitigation and adaptation are substantial risks. These risks are especially significant in fast-urbanizing deltas, such as the Pearl River Delta in China, because the conflict between urbanization and flooding caused by climate change will be more significant in the future. This paper elaborates on an approach that employs a future land-use simulation (FLUS) model for scenario-based 100-year coastal flood risk assessment. Storylines of future scenarios from the Intergovernmental Panel on Climate Change (IPCC), called the representative concentration pathways (RCPs) 2.6 and 8.5, are utilized in the present study. The Guangzhou Metropolitan Area (GMA) is used as a case study to explore the probable implications of future land-use changes due to the ongoing urbanization process in the region in relation to projected environmental changes (sea-level rise, storm surge, and land subsidence). The results indicate that there will be a significant increase in flooded urban areas in the future. The simulations show that, as compared to 2015, the built-up area in the GMA will increase by 246.57 km2 in 2030 and 513.03 km2 in 2050. As compared to 2015, the flooding of built-up areas in 2030 and 2050 will respectively increase by about 31.32 km2 and 48.49 km2 under the RCP 8.5 scenario. It is also found that, as the main driving factor, urbanization will increase the flooding of built-up areas in Guangzhou in 2030 and 2050 by about 1.9 km2 and 5.9 km2, respectively, under the RCP 2.6 scenario as compared to 2015. Additionally, due to environmental changes, the flooding of built-up areas in Guangzhou will increase by about 24.2 km2 and 26.8 km2, respectively, under the RCP 8.5 scenario by 2030 and 2050 as compared to 2015. This increasing flood risk information determined by the simulation provides insight into the spatial distribution of future flood-prone urban areas to facilitate the development and prioritization of flood mitigation measures at the most critical locations in the region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
12秒前
阿维里奥发布了新的文献求助10
19秒前
李崋壹完成签到 ,获得积分10
22秒前
捉迷藏完成签到,获得积分10
29秒前
在水一方应助畅快的枫采纳,获得10
37秒前
NJ完成签到,获得积分20
43秒前
49秒前
乐观的饭饭完成签到 ,获得积分10
50秒前
51秒前
畅快的枫发布了新的文献求助10
55秒前
隐形傲霜完成签到 ,获得积分10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
外向邑发布了新的文献求助10
1分钟前
小鲤鱼完成签到 ,获得积分10
1分钟前
1分钟前
科研小白完成签到 ,获得积分10
1分钟前
王旭东完成签到 ,获得积分10
2分钟前
2分钟前
柚子完成签到 ,获得积分10
2分钟前
Swear完成签到 ,获得积分10
2分钟前
jyy应助科研通管家采纳,获得10
3分钟前
iShine完成签到 ,获得积分10
3分钟前
充电宝应助腼腆的三毒采纳,获得10
3分钟前
4分钟前
W~舞完成签到,获得积分10
4分钟前
babe完成签到 ,获得积分10
4分钟前
4分钟前
orixero应助LEEM采纳,获得10
4分钟前
4分钟前
囚徒发布了新的文献求助10
4分钟前
4分钟前
LEEM完成签到,获得积分10
4分钟前
LEEM发布了新的文献求助10
4分钟前
Akim应助LEEM采纳,获得10
4分钟前
孙老师完成签到 ,获得积分10
4分钟前
Akim应助KKIII采纳,获得10
5分钟前
姚老表完成签到,获得积分10
5分钟前
Wfmmm完成签到,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356823
求助须知:如何正确求助?哪些是违规求助? 2980410
关于积分的说明 8694380
捐赠科研通 2662091
什么是DOI,文献DOI怎么找? 1457587
科研通“疑难数据库(出版商)”最低求助积分说明 674819
邀请新用户注册赠送积分活动 665734