A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer

无线电技术 医学 肺癌 逻辑回归 接收机工作特性 随机森林 人工智能 机器学习 核医学 放射科 病理 内科学 计算机科学
作者
Seung Hyup Hyun,Mi Sun Ahn,Young Wha Koh,Su Jin Lee
出处
期刊:Clinical Nuclear Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (12): 956-960 被引量:124
标识
DOI:10.1097/rlu.0000000000002810
摘要

Purpose We sought to distinguish lung adenocarcinoma (ADC) from squamous cell carcinoma using a machine-learning algorithm with PET-based radiomic features. Methods A total of 396 patients with 210 ADCs and 186 squamous cell carcinomas who underwent FDG PET/CT prior to treatment were retrospectively analyzed. Four clinical features (age, sex, tumor size, and smoking status) and 40 radiomic features were investigated in terms of lung ADC subtype prediction. Radiomic features were extracted from the PET images of segmented tumors using the LIFEx package. The clinical and radiomic features were ranked, and a subset of useful features was selected based on Gini coefficient scores in terms of associations with histological class. The areas under the receiver operating characteristic curves (AUCs) of classifications afforded by several machine-learning algorithms (random forest, neural network, naive Bayes, logistic regression, and a support vector machine) were compared and validated via random sampling. Results We developed and validated a PET-based radiomic model predicting the histological subtypes of lung cancer. Sex, SUVmax, gray-level zone length nonuniformity, gray-level nonuniformity for zone, and total lesion glycolysis were the 5 best predictors of lung ADC. The logistic regression model outperformed all other classifiers (AUC = 0.859, accuracy = 0.769, F1 score = 0.774, precision = 0.804, recall = 0.746) followed by the neural network model (AUC = 0.854, accuracy = 0.772, F1 score = 0.777, precision = 0.807, recall = 0.750). Conclusions A machine-learning approach successfully identified the histological subtypes of lung cancer. A PET-based radiomic features may help clinicians improve the histopathologic diagnosis in a noninvasive manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助Sg采纳,获得10
2秒前
外星人歪歪歪完成签到,获得积分20
3秒前
善学以致用应助敷衍采纳,获得10
3秒前
4秒前
4秒前
宋以安发布了新的文献求助30
4秒前
江停完成签到,获得积分10
5秒前
科研通AI2S应助天暗星采纳,获得10
6秒前
6秒前
隐形曼青应助奋斗迎波采纳,获得10
6秒前
3dyf完成签到,获得积分20
8秒前
敷衍完成签到,获得积分10
9秒前
yar应助dew采纳,获得10
11秒前
彭于晏应助dew采纳,获得10
11秒前
11秒前
11秒前
领导范儿应助田1111采纳,获得10
13秒前
Lucas应助QI采纳,获得10
13秒前
牧无声发布了新的文献求助10
15秒前
16秒前
Sg发布了新的文献求助10
17秒前
DSC发布了新的文献求助10
17秒前
十一完成签到,获得积分10
18秒前
xiaofei666发布了新的文献求助10
21秒前
21秒前
21秒前
23秒前
连敏锐发布了新的文献求助10
23秒前
24秒前
dew完成签到,获得积分10
24秒前
24秒前
buuyoo完成签到 ,获得积分10
25秒前
25秒前
Elexmy发布了新的文献求助10
26秒前
27秒前
29秒前
小余完成签到,获得积分10
29秒前
啵叽一口发布了新的文献求助10
29秒前
摆烂完成签到 ,获得积分10
30秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267932
求助须知:如何正确求助?哪些是违规求助? 2907306
关于积分的说明 8341638
捐赠科研通 2577960
什么是DOI,文献DOI怎么找? 1401462
科研通“疑难数据库(出版商)”最低求助积分说明 655037
邀请新用户注册赠送积分活动 634108