葡萄糖转运蛋白
丙戊酸
运输机
癫痫
化学
药理学
星形胶质细胞
神经科学
内分泌学
医学
生物
生物化学
基因
中枢神经系统
胰岛素
作者
Sung Koo Kim,Hong Yang,Juan M. Pascual,Darryl C. De Vivo
标识
DOI:10.1177/0883073812440044
摘要
Glucose transporter 1 facilitates glucose transport across the blood–brain barrier. By increasing histone acetylation at the SLC2A1 promotor, valproic acid could increase SLC2A1 gene expression. This study was designed to evaluate the effects of valproic acid on glucose transport in astrocyte cultures derived from SLC2A1 heterozygous mice. Primary astrocyte cultures were prepared from the cerebral cortex of 1-day-old neonatal mice. Cultured astrocytes were incubated with valproic acid (0.05, 0.5, and 5 mM) for 48 hours. On day 3, the glucose uptake capacity of the astrocytes was measured by using 14 C-2-Deoxy-d-glucose under zero-trans conditions. The heterozygous astrocyte glucose uptake treated with valproic acid (0.05 and 0.5 mM) for 48 hours was significantly increased compared with the untreated control heterozygous astrocytes. Our findings demonstrate that valproic acid increased glucose transport capacity in SLC2A1 heterozygous cerebral astrocytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI