已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

New improved model for joint segmentation and registration of multi-modality images: application to medical images

人工智能 分割 计算机科学 计算机视觉 雅卡索引 模式识别(心理学) 图像配准 图像分割 相似性(几何) 尺度空间分割 非参数统计 图像(数学) 数学 统计
作者
Noor Badshah,Nasra Begum,Lavdie Rada,Muniba Ashfaq,Hadia Atta
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (4): 8755-8770
标识
DOI:10.3233/jifs-233306
摘要

Joint segmentation and registration of images is a focused area of research nowadays. Jointly segmenting and registering noisy images and images having weak boundaries/intensity inhomogeneity is a challenging task. In medical image processing, joint segmentation and registration are essential methods that aid in distinguishing structures and aligning images for precise diagnosis and therapy. However, these methods encounter challenges, such as computational complexity and sensitivity to variations in image quality, which may reduce their effectiveness in real-world applications. Another major issue is still attaining effective joint segmentation and registration in the presence of artifacts or anatomical deformations. In this paper, a new nonparametric joint model is proposed for the segmentation and registration of multi-modality images having weak boundaries/noise. For segmentation purposes, the model will be utilizing local binary fitting data term and for registration, it is utilizing conditional mutual information. For regularization of the model, we are using linear curvature. The new proposed model is more efficient to segmenting and registering multi-modality images having intensity inhomogeneity, noise and/or weak boundaries. The proposed model is also tested on the images obtained from the freely available CHOAS dataset and compare the results of the proposed model with the other existing models using statistical measures such as the Jaccard similarity index, relative reduction, Dice similarity coefficient and Hausdorff distance. It can be seen that the proposed model outperforms the other existing models in terms of quantitatively and qualitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JL完成签到 ,获得积分10
1秒前
2秒前
2秒前
JRG发布了新的文献求助10
3秒前
djl1n完成签到,获得积分10
3秒前
mmyhn发布了新的文献求助10
4秒前
希望天下0贩的0应助Aiden采纳,获得10
5秒前
99v587发布了新的文献求助10
7秒前
科研通AI5应助老孟采纳,获得50
10秒前
烟花应助尊敬乐蕊采纳,获得10
11秒前
13秒前
Aiden发布了新的文献求助10
17秒前
Glitter完成签到 ,获得积分10
19秒前
19秒前
打打应助花花采纳,获得10
19秒前
Abao完成签到,获得积分10
20秒前
20秒前
21秒前
额123没名完成签到 ,获得积分10
22秒前
CipherSage应助99v587采纳,获得10
22秒前
今我来思发布了新的文献求助30
24秒前
halabouqii发布了新的文献求助10
24秒前
Aiden完成签到,获得积分10
24秒前
YafishYc发布了新的文献求助10
25秒前
KH完成签到,获得积分10
26秒前
kmario完成签到,获得积分10
27秒前
祭酒完成签到 ,获得积分10
27秒前
Yuan完成签到,获得积分10
28秒前
ah完成签到,获得积分10
29秒前
kouryoufu完成签到,获得积分10
29秒前
老孟发布了新的文献求助50
32秒前
北觅完成签到 ,获得积分10
33秒前
傅家庆完成签到 ,获得积分10
33秒前
Riley发布了新的文献求助30
34秒前
LAN完成签到,获得积分10
37秒前
坐忘完成签到,获得积分10
37秒前
胡图图啦啦完成签到 ,获得积分10
45秒前
失眠的怀柔完成签到 ,获得积分10
48秒前
明亮不乐完成签到,获得积分20
57秒前
58秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538859
求助须知:如何正确求助?哪些是违规求助? 3116572
关于积分的说明 9325954
捐赠科研通 2814530
什么是DOI,文献DOI怎么找? 1546875
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145