已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features

机器学习 人工智能 朴素贝叶斯分类器 梯度升压 代谢综合征 预测建模 医学 Boosting(机器学习) 计算机科学 中医药 大数据 数据挖掘 支持向量机 随机森林 内科学 替代医学 病理 肥胖
作者
Jianhua Zheng,Z. Zhang,Peng Ding,Qing-Guo Meng,Shuangyin Liu,Gaolin Yang,Zhenjie Liu,Zhengyuan Deng
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (12): e22727-e22727 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e22727
摘要

Metabolic syndrome (MetS) has a high prevalence and is prone to many complications. However, current MetS diagnostic methods require blood tests that are not conducive to self-testing, so a user-friendly and accurate method for predicting MetS is needed to facilitate early detection and treatment. In this study, a MetS prediction model based on a simple, small number of Traditional Chinese Medicine (TCM) clinical indicators and biological indicators combined with machine learning algorithms is investigated. Electronic medical record data from 2040 patients who visited outpatient clinics at Guangdong Chinese medicine hospitals from 2020 to 2021 were used to investigate the fusion of Bayesian optimization (BO) and eXtreme gradient boosting (XGBoost) in order to create a BO-XGBoost model for screening nineteen key features in three categories: individual bio-information, TCM indicators, and TCM habits that influence MetS prediction. Subsequently, the predictive diagnostic model for MetS was developed. The experimental results revealed that the model proposed in this paper achieved values of 93.35 %, 90.67 %, 80.40 %, and 0.920 for the F1, sensitivity, FRS, and AUC metrics, respectively. These values outperformed those of the seven other tested machine learning models. Finally, this study developed an intelligent prediction application for MetS based on the proposed model, which can be utilized by ordinary users to perform self-diagnosis through a web-based questionnaire, thereby accomplishing the objective of early detection and intervention for MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Superg采纳,获得10
1秒前
科研通AI5应助笑面客采纳,获得10
2秒前
CipherSage应助仁爱一德采纳,获得10
3秒前
爆米花应助scofield采纳,获得10
3秒前
4秒前
MM完成签到 ,获得积分10
5秒前
orixero应助悦耳问筠采纳,获得10
5秒前
科研通AI5应助夏雪采纳,获得10
6秒前
6秒前
bc应助lzp采纳,获得20
7秒前
8秒前
9秒前
南瓜发布了新的文献求助10
9秒前
10秒前
哦呦发布了新的文献求助10
12秒前
笑面客发布了新的文献求助10
15秒前
16秒前
领导范儿应助乐观伟诚采纳,获得10
18秒前
友好听云发布了新的文献求助10
20秒前
21秒前
23秒前
狼宝发布了新的文献求助10
24秒前
打打应助CMUVictor采纳,获得10
25秒前
安详向薇完成签到,获得积分10
27秒前
impending发布了新的文献求助50
27秒前
Phoenix发布了新的文献求助10
28秒前
30秒前
没写名字233完成签到 ,获得积分10
31秒前
31秒前
莫小烦完成签到,获得积分10
32秒前
李小牛发布了新的文献求助10
32秒前
你看起来很好吃完成签到,获得积分10
33秒前
钉钉完成签到 ,获得积分10
33秒前
爆米花应助Matthewwt采纳,获得10
34秒前
34秒前
忧郁的寻冬完成签到,获得积分10
37秒前
41秒前
神说应助科研通管家采纳,获得10
42秒前
烟花应助科研通管家采纳,获得10
42秒前
FashionBoy应助科研通管家采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763344
求助须知:如何正确求助?哪些是违规求助? 3307892
关于积分的说明 10142056
捐赠科研通 3022949
什么是DOI,文献DOI怎么找? 1659413
邀请新用户注册赠送积分活动 792637
科研通“疑难数据库(出版商)”最低求助积分说明 755005