Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features

机器学习 人工智能 朴素贝叶斯分类器 梯度升压 代谢综合征 预测建模 医学 Boosting(机器学习) 计算机科学 中医药 大数据 数据挖掘 支持向量机 随机森林 内科学 替代医学 病理 肥胖
作者
Jianhua Zheng,Z. Zhang,Peng Ding,Qing-Guo Meng,Shuangyin Liu,Gaolin Yang,Zhenjie Liu,Zhengyuan Deng
出处
期刊:Heliyon [Elsevier]
卷期号:9 (12): e22727-e22727 被引量:4
标识
DOI:10.1016/j.heliyon.2023.e22727
摘要

Metabolic syndrome (MetS) has a high prevalence and is prone to many complications. However, current MetS diagnostic methods require blood tests that are not conducive to self-testing, so a user-friendly and accurate method for predicting MetS is needed to facilitate early detection and treatment. In this study, a MetS prediction model based on a simple, small number of Traditional Chinese Medicine (TCM) clinical indicators and biological indicators combined with machine learning algorithms is investigated. Electronic medical record data from 2040 patients who visited outpatient clinics at Guangdong Chinese medicine hospitals from 2020 to 2021 were used to investigate the fusion of Bayesian optimization (BO) and eXtreme gradient boosting (XGBoost) in order to create a BO-XGBoost model for screening nineteen key features in three categories: individual bio-information, TCM indicators, and TCM habits that influence MetS prediction. Subsequently, the predictive diagnostic model for MetS was developed. The experimental results revealed that the model proposed in this paper achieved values of 93.35 %, 90.67 %, 80.40 %, and 0.920 for the F1, sensitivity, FRS, and AUC metrics, respectively. These values outperformed those of the seven other tested machine learning models. Finally, this study developed an intelligent prediction application for MetS based on the proposed model, which can be utilized by ordinary users to perform self-diagnosis through a web-based questionnaire, thereby accomplishing the objective of early detection and intervention for MetS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱学习的超完成签到,获得积分10
2秒前
果果完成签到,获得积分10
3秒前
执着的日记本完成签到 ,获得积分10
4秒前
大模型应助白蓝采纳,获得10
4秒前
优美芷蝶完成签到,获得积分10
6秒前
贪玩手链完成签到 ,获得积分10
7秒前
8秒前
研友_LN7AOn发布了新的文献求助10
10秒前
Fiona完成签到 ,获得积分10
10秒前
JUN关注了科研通微信公众号
12秒前
13秒前
Akim应助Ann采纳,获得10
13秒前
shine完成签到,获得积分10
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
所所应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
烂漫念文应助科研通管家采纳,获得30
15秒前
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得50
15秒前
搜集达人应助原野小年采纳,获得10
16秒前
dachengzi完成签到,获得积分10
16秒前
20秒前
个性的紫菜应助Ymir采纳,获得10
21秒前
LILI发布了新的文献求助10
21秒前
Ann发布了新的文献求助10
25秒前
斯文败类应助任海军采纳,获得10
26秒前
28秒前
星辰大海应助幸福鱼采纳,获得10
29秒前
HC3完成签到 ,获得积分10
30秒前
Ann完成签到,获得积分10
33秒前
33秒前
JUN发布了新的文献求助10
34秒前
36秒前
研友_LN7AOn完成签到,获得积分10
36秒前
37秒前
YanZhe完成签到,获得积分10
37秒前
旭宝儿发布了新的文献求助10
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194