Dense Tiny Object Detection: A Scene Context Guided Approach and A Unified Benchmark

水准点(测量) 计算机科学 背景(考古学) 人工智能 目标检测 计算机视觉 对象(语法) 遥感 模式识别(心理学) 地质学 地图学 地理 古生物学
作者
Zhicheng Zhao,Jiaxin Du,Chenglong Li,Xiang Fang,Yun Xiao,Jin Tang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3357706
摘要

With the continuous advancement of remote sensing observation technology, wide-area observation and high-resolution imaging make remote sensing images contain a large number of dense tiny objects. The detection of dense tiny objects is a very challenging task since these objects are with very low resolution and might stick together. Existing work lacks further exploration of the contextual scene information and inherent characteristics of dense tiny objects, which are crucial for performance improvement of dense tiny object detection. In this work, we propose a novel Scene Contextualized Detection Network (SCDNet) by decoupling scene contextual information through a dedicated scene classification sub-network, thereby enabling an enhanced exploration of the relationship between tiny objects and their surrounding environments. In particular, we design a lightweight scene context guided fusion module in SCDNet to incorporate scene context information around dense tiny objects more effectively. Moreover, we further develop the scene context guided foreground enhancement module to suppress the background information while enhancing the foreground information based on the scene information. In addition, this research field still lacks a large-scale benchmark dataset with dense tiny objects, which is crucial for the training and comprehensive evaluation of detection methods. To this end, we construct a large-scale dataset for dense tiny object detection. It contains 11,600 images with 1,019,800 instances, the average absolute size of objects is smaller than 13 pixels, and each image contains 88 objects on average. Extensive experiments are conducted on the proposed dataset, and the results demonstrate the superiority and effectiveness of SCDNet compared to existing methods. The dataset and evaluation code are available at https://github.com/mmic-lcl.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
杭ge完成签到,获得积分10
3秒前
Kyros完成签到,获得积分10
3秒前
搜集达人应助coco采纳,获得10
3秒前
asdfj应助lzzz采纳,获得20
4秒前
科研小白完成签到,获得积分10
4秒前
张秋雨发布了新的文献求助10
5秒前
369小妮发布了新的文献求助10
5秒前
cy发布了新的文献求助10
6秒前
自行设置完成签到,获得积分10
8秒前
博弈春秋应助HAPPY采纳,获得10
8秒前
10秒前
11秒前
12秒前
义气的半青完成签到 ,获得积分10
12秒前
尉迟完成签到,获得积分10
12秒前
12秒前
852应助雪饼采纳,获得10
12秒前
12秒前
12秒前
14秒前
美满忆文应助张秋雨采纳,获得10
14秒前
14秒前
田様应助王鑫采纳,获得10
16秒前
SDNUDRUG发布了新的文献求助10
16秒前
汉堡包应助chengmenglong采纳,获得10
17秒前
王梦瑶发布了新的文献求助10
18秒前
18秒前
dracovu完成签到,获得积分10
18秒前
她迷人发布了新的文献求助10
18秒前
sztao发布了新的文献求助30
18秒前
纯真皮卡丘完成签到 ,获得积分10
19秒前
20秒前
酷波er应助狮子座采纳,获得10
20秒前
研友_nEjYyZ发布了新的文献求助10
21秒前
言午完成签到,获得积分10
21秒前
24秒前
Nancy发布了新的文献求助10
24秒前
Owen应助LLL采纳,获得10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153347
求助须知:如何正确求助?哪些是违规求助? 2804555
关于积分的说明 7860074
捐赠科研通 2462478
什么是DOI,文献DOI怎么找? 1310769
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794