Churn Prediction via Multimodal Fusion Learning: Integrating Customer Financial Literacy, Voice, and Behavioral Data

计算机科学 人工智能 机器学习 深度学习 传感器融合 预测建模 基线(sea) 人工神经网络 金融知识 财务 海洋学 地质学 经济
作者
David Hason Rudd,Huan Huo,Rafiqul Islam,Guandong Xu
标识
DOI:10.1109/besc59560.2023.10386253
摘要

In today’s competitive landscape, businesses grapple with customer retention. Churn prediction models, although beneficial, often lack accuracy due to the reliance on a single data source. The intricate nature of human behavior and high-dimensional customer data further complicate these efforts. To address these concerns, this paper proposes a multimodal fusion learning model for identifying customer churn risk levels in financial service providers. Our multimodal approach integrates customer sentiments, financial literacy (FL) level, and financial behavioral data, enabling more accurate and bias-free churn prediction models. The proposed FL model utilizes a SMOGNCOREG supervised model to gauge customer FL levels from their financial data. The baseline churn model applies an ensemble artificial neural network and oversampling techniques to predict churn propensity in high-dimensional financial data. We also incorporate a speech emotion recognition model employing a pre-trained CNN-VGG16 to recognize customer emotions based on pitch, energy, and tone. To integrate these diverse features while retaining unique insights, we introduced late and hybrid fusion techniques that complementary boost coordinated multimodal co-learning. Robust metrics were utilized to evaluate the proposed multimodal fusion model and hence the approach’s validity, including mean average precision and macro-averaged F1 score. Our novel approach demonstrates a marked improvement in churn prediction, achieving a test accuracy of 91.2%, a Mean Average Precision (MAP) score of 66, and a Macro-Averaged F1 score of 54 through the proposed hybrid fusion learning technique compared with late fusion and baseline models. Furthermore, the analysis demonstrates a positive correlation between negative emotions, low FL scores, and high-risk customers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lamer发布了新的文献求助10
刚刚
慕青应助1111111111111采纳,获得10
刚刚
小王发布了新的文献求助10
刚刚
刚刚
墨言无殇完成签到 ,获得积分10
1秒前
搜集达人应助帕尼灬尼采纳,获得10
1秒前
愉快绿蓉完成签到,获得积分20
1秒前
TianBa123完成签到,获得积分20
2秒前
Ache完成签到,获得积分10
4秒前
健忘绿茶给健忘绿茶的求助进行了留言
4秒前
柴柴发布了新的文献求助10
4秒前
yang发布了新的文献求助10
5秒前
恨安发布了新的文献求助10
6秒前
希望天下0贩的0应助李2003采纳,获得10
6秒前
顾矜应助董浩楠采纳,获得10
6秒前
Ru完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
阿斯师大发布了新的文献求助20
8秒前
8秒前
霜风款冬发布了新的文献求助10
9秒前
9秒前
李治海完成签到,获得积分10
9秒前
奔波霸完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助郭晓琦采纳,获得10
10秒前
夙夙完成签到,获得积分10
11秒前
孙刚发布了新的文献求助10
11秒前
quhayley发布了新的文献求助30
11秒前
晚灯君发布了新的文献求助10
12秒前
demian发布了新的文献求助10
13秒前
13秒前
13秒前
Jasper应助hp571采纳,获得10
13秒前
13秒前
天天快乐应助李治海采纳,获得10
14秒前
可达燊完成签到,获得积分10
14秒前
今后应助小怪兽采纳,获得10
15秒前
小晟完成签到,获得积分10
15秒前
小鹿呀完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635