Churn Prediction via Multimodal Fusion Learning: Integrating Customer Financial Literacy, Voice, and Behavioral Data

计算机科学 人工智能 机器学习 深度学习 传感器融合 预测建模 基线(sea) 人工神经网络 金融知识 财务 海洋学 地质学 经济
作者
David Hason Rudd,Huan Huo,Rafiqul Islam,Guandong Xu
标识
DOI:10.1109/besc59560.2023.10386253
摘要

In today’s competitive landscape, businesses grapple with customer retention. Churn prediction models, although beneficial, often lack accuracy due to the reliance on a single data source. The intricate nature of human behavior and high-dimensional customer data further complicate these efforts. To address these concerns, this paper proposes a multimodal fusion learning model for identifying customer churn risk levels in financial service providers. Our multimodal approach integrates customer sentiments, financial literacy (FL) level, and financial behavioral data, enabling more accurate and bias-free churn prediction models. The proposed FL model utilizes a SMOGNCOREG supervised model to gauge customer FL levels from their financial data. The baseline churn model applies an ensemble artificial neural network and oversampling techniques to predict churn propensity in high-dimensional financial data. We also incorporate a speech emotion recognition model employing a pre-trained CNN-VGG16 to recognize customer emotions based on pitch, energy, and tone. To integrate these diverse features while retaining unique insights, we introduced late and hybrid fusion techniques that complementary boost coordinated multimodal co-learning. Robust metrics were utilized to evaluate the proposed multimodal fusion model and hence the approach’s validity, including mean average precision and macro-averaged F1 score. Our novel approach demonstrates a marked improvement in churn prediction, achieving a test accuracy of 91.2%, a Mean Average Precision (MAP) score of 66, and a Macro-Averaged F1 score of 54 through the proposed hybrid fusion learning technique compared with late fusion and baseline models. Furthermore, the analysis demonstrates a positive correlation between negative emotions, low FL scores, and high-risk customers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuhan完成签到,获得积分20
刚刚
刚刚
Radisson完成签到,获得积分10
刚刚
刚刚
橡皮鱼完成签到,获得积分10
刚刚
无情麦片完成签到 ,获得积分10
刚刚
HonS完成签到,获得积分10
1秒前
嘉嘉发布了新的文献求助10
2秒前
传统的青完成签到,获得积分10
2秒前
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
pp完成签到,获得积分10
2秒前
浪子应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
要努力鸭发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浪子应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
有魅力的超短裙完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
尹辉发布了新的文献求助10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
yyyyy完成签到,获得积分10
4秒前
4秒前
huangjs完成签到,获得积分10
4秒前
5秒前
乐乐应助小乔采纳,获得30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645662
求助须知:如何正确求助?哪些是违规求助? 4769440
关于积分的说明 15031321
捐赠科研通 4804378
什么是DOI,文献DOI怎么找? 2568968
邀请新用户注册赠送积分活动 1526089
关于科研通互助平台的介绍 1485700