Preparation of super-hydrophobic surface with micro-nano layered structure on 316 stainless steel by one-step wet chemical method

接触角 X射线光电子能谱 材料科学 扫描电子显微镜 试剂 腐蚀 化学工程 过氧化氢 氢氟酸 三氯氢硅 表面改性 核化学 复合材料 化学 冶金 有机化学 工程类
作者
Yusong Chen,Wenyi Deng,Shitong Zhu,Guang Chen,Lihua Wang,Yaxin Su
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:655: 130291-130291 被引量:15
标识
DOI:10.1016/j.colsurfa.2022.130291
摘要

In order to simplify the traditional preparation procedure of super-hydrophobic stainless steel (SLS), a novel one-step method was developed to produce super-hydrophobic surface on 316 SLS under the simultaneous chemical etching and surface modification with cofunction of hydrogen peroxide (H2O2), hydrofluoric acid (HF) and perfluorooctyl trichlorosilane (PFOS). The effects of the mixing ratio of reagents (H2O2, HF and PFOS) and reaction time were explored by orthogonal experiments. The results indicated that H2O2 showed the most significant effect on the hydrophobicity of SLS. When the molar ratio of H2O2/HF ranged between 0.2/1–0.4/1, the prepared samples showed excellent super-hydrophobicity, with the maximum water contact angle of 161.78° and the minimum slip angle of 1.94°. The influencing mechanism of H2O2 on the etching and modification was further explored by X-ray photoelectron spectroscopy (XPS) and Scanning electron microscopy (SEM). The results showed that the ratio of H2O2/HF markedly affected the grafting of PFOS onto the surface of SLS. According to the tests of corrosion resistance and durability, the corrosion resistance of super-hydrophobic surface was 6 times higher than that of raw SLS, and the super-hydrophobicity of SLS hardly changed after 3 months of exposure in the ambient air. The water contact angle was still close to 150° after peeling adhesive tape for 12 times. The results of this study indicated a promising perspective for industrial application of the one-step method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王欣瑶完成签到 ,获得积分10
1秒前
1秒前
1秒前
船船发布了新的文献求助10
2秒前
爆米花应助科研小陈采纳,获得10
2秒前
kkkkkkkkkkey完成签到,获得积分10
2秒前
忧郁若菱发布了新的文献求助10
4秒前
4秒前
一一应助zhb采纳,获得10
4秒前
meikoo发布了新的文献求助10
5秒前
傲娇的凡旋应助英勇思烟采纳,获得10
5秒前
5秒前
6秒前
船船完成签到,获得积分10
6秒前
谷雨完成签到,获得积分20
6秒前
Lrd发布了新的文献求助10
7秒前
百川发布了新的文献求助10
7秒前
8秒前
躺平的师兄完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
机灵的听荷完成签到,获得积分10
10秒前
健康的谷芹完成签到,获得积分10
11秒前
Ava应助重要手机采纳,获得10
11秒前
阿拉波波完成签到,获得积分10
12秒前
12秒前
13秒前
yvxi发布了新的文献求助10
13秒前
13秒前
kele发布了新的文献求助10
13秒前
13秒前
Jasper应助meikoo采纳,获得10
14秒前
14秒前
wnn发布了新的文献求助50
14秒前
慕青应助112233采纳,获得10
14秒前
万能图书馆应助七言采纳,获得10
15秒前
冷静的仙人掌完成签到,获得积分10
15秒前
隐形曼青应助淡定小懒猪采纳,获得10
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476698
求助须知:如何正确求助?哪些是违规求助? 3068270
关于积分的说明 9107322
捐赠科研通 2759775
什么是DOI,文献DOI怎么找? 1514279
邀请新用户注册赠送积分活动 700142
科研通“疑难数据库(出版商)”最低求助积分说明 699329