Spiking Neural Network for Ultralow-Latency and High-Accurate Object Detection

计算机科学 尖峰神经网络 联营 人工智能 目标检测 人工神经网络 延迟(音频) 模式识别(心理学) 电信
作者
Jinye Qu,Zeyu Gao,Tielin Zhang,Yanfeng Lu,Huajin Tang,Hong Qiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:7
标识
DOI:10.1109/tnnls.2024.3372613
摘要

Spiking Neural Networks (SNNs) have attracted significant attention for their energy-efficient and brain-inspired event-driven properties. Recent advancements, notably Spiking-YOLO, have enabled SNNs to undertake advanced object detection tasks. Nevertheless, these methods often suffer from increased latency and diminished detection accuracy, rendering them less suitable for latency-sensitive mobile platforms. Additionally, the conversion of artificial neural networks (ANNs) to SNNs frequently compromises the integrity of the ANNs' structure, resulting in poor feature representation and heightened conversion errors. To address the issues of high latency and low detection accuracy, we introduce two solutions: timestep compression and spike-time-dependent integrated (STDI) coding. Timestep compression effectively reduces the number of timesteps required in the ANN-to-SNN conversion by condensing information. The STDI coding employs a time-varying threshold to augment information capacity. Furthermore, we have developed an SNN-based spatial pyramid pooling (SPP) structure, optimized to preserve the network's structural efficacy during conversion. Utilizing these approaches, we present the ultralow latency and highly accurate object detection model, SUHD. SUHD exhibits exceptional performance on challenging datasets like PASCAL VOC and MS COCO, achieving a remarkable reduction of approximately 750 times in timesteps and a 30% enhancement in mean average precision (mAP) compared to Spiking-YOLO on MS COCO. To the best of our knowledge, SUHD is currently the deepest spike-based object detection model, achieving ultralow timesteps for lossless conversion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的冥幽完成签到,获得积分10
刚刚
852应助lc采纳,获得10
刚刚
欧阳铭完成签到,获得积分10
1秒前
浮云发布了新的文献求助10
1秒前
2秒前
凹凸曼完成签到 ,获得积分10
3秒前
8R60d8应助kkk采纳,获得10
4秒前
4秒前
4秒前
4秒前
6秒前
lzz发布了新的文献求助10
7秒前
YY发布了新的文献求助10
7秒前
不配.应助简单的凝蕊采纳,获得10
8秒前
swx发布了新的文献求助10
8秒前
我是老大应助ziwei采纳,获得10
8秒前
斯文败类应助酷炫的傲易采纳,获得10
8秒前
8秒前
9秒前
9秒前
无花果应助mokano采纳,获得10
10秒前
可爱半凡完成签到,获得积分10
10秒前
周星星发布了新的文献求助10
10秒前
CipherSage应助swx采纳,获得10
12秒前
13秒前
kk发布了新的文献求助10
14秒前
14秒前
kkk发布了新的文献求助10
16秒前
banana完成签到 ,获得积分10
16秒前
17秒前
西奥完成签到,获得积分10
17秒前
RicTcuceN_完成签到,获得积分10
18秒前
科研通AI2S应助爱笑擎采纳,获得20
18秒前
科研狗头军师完成签到,获得积分10
18秒前
ziwei完成签到,获得积分10
18秒前
19秒前
淡然路人发布了新的文献求助10
19秒前
优秀白曼发布了新的文献求助10
19秒前
nowfitness完成签到,获得积分10
19秒前
科目三应助yehata采纳,获得10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542