Vehicle trajectory prediction and collision warning for lane change conditions

弹道 碰撞 计算机科学 预警系统 航空学 计算机安全 工程类 物理 电信 天文
作者
Chi Zhang,Jichao Hong,Fengwei Liang,Xinyang Zhang,Kerui Li,Jingsong Yang,Huang Zhong-guo
出处
期刊:Journal of Transportation Safety & Security [Informa]
卷期号:: 1-26
标识
DOI:10.1080/19439962.2024.2329121
摘要

With the gradual increase in the number of vehicles on the road, the number of traffic accidents has also increased. Inappropriate lane changing is an important cause of traffic accidents. Based on the above problems, it is of great significance to study vehicle trajectory prediction and collision warning under lane changing conditions. Therefore, this paper proposes a collision warning algorithm based on S-shaped conditions for vehicle trajectory prediction and collision warning. The method can provide collision warnings so that vehicle collisions can be avoided. In this study, the trajectories of the surrounding vehicles in the constructed scenario are predicted by long- and short-term neural networks. At the same time, a B-spline curve is used to plan the lane change path of the vehicle when it encounters an obstacle. Next, a linear quadratic regulator trajectory tracking control algorithm is used to track the planned path. Finally, the predicted trajectories of the surrounding vehicles and the planned trajectories of the experimental vehicles are simulated and analyzed to provide collision warning. The simulation results show that the method can provide a 2s warning of whether a vehicle can change lanes or not. The study combines trajectory prediction and path planning, which is an important reference for collision warning research in autonomous driving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
都学好了完成签到,获得积分10
1秒前
可可的好先生完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
发10篇SCI发布了新的文献求助10
7秒前
Orange应助tanglu采纳,获得10
7秒前
852应助Jtiger采纳,获得10
7秒前
超级的千青完成签到 ,获得积分10
9秒前
顺心书琴完成签到,获得积分10
13秒前
HuanChen完成签到,获得积分10
14秒前
llll完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
23秒前
Rui完成签到,获得积分10
24秒前
26秒前
一一发布了新的文献求助10
27秒前
27秒前
laskxd发布了新的文献求助10
30秒前
李健应助Corioreos采纳,获得10
30秒前
30秒前
Jtiger发布了新的文献求助10
31秒前
科研通AI2S应助你好采纳,获得10
32秒前
正直冰露发布了新的文献求助200
33秒前
320me666完成签到,获得积分10
33秒前
33秒前
yujiashun完成签到,获得积分10
34秒前
Unsurpassed发布了新的文献求助10
34秒前
酷波er应助开心的小泽采纳,获得10
35秒前
starofjlu完成签到,获得积分10
36秒前
Hello应助niu采纳,获得10
36秒前
iNk应助时尚战斗机采纳,获得20
37秒前
kelly完成签到,获得积分20
41秒前
Unsurpassed完成签到,获得积分20
41秒前
42秒前
42秒前
打打应助勤劳的以亦采纳,获得10
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461239
求助须知:如何正确求助?哪些是违规求助? 3054973
关于积分的说明 9045828
捐赠科研通 2744888
什么是DOI,文献DOI怎么找? 1505722
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233