Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning

文件夹 计算机科学 投资组合优化 夏普比率 库存(枪支) 人工智能 机器学习 计量经济学 经济 金融经济学 工程类 机械工程
作者
Apichat Chaweewanchon,Rujira Chaysiri
出处
期刊:International Journal of Financial Studies [Multidisciplinary Digital Publishing Institute]
卷期号:10 (3): 64-64 被引量:33
标识
DOI:10.3390/ijfs10030064
摘要

With the advances in time-series prediction, several recent developments in machine learning have shown that integrating prediction methods into portfolio selection is a great opportunity. In this paper, we propose a novel approach to portfolio formation strategy based on a hybrid machine learning model that combines convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with robust input features obtained from Huber’s location for stock prediction and the Markowitz mean-variance (MV) model for optimal portfolio construction. Specifically, this study first applies a prediction method for stock preselection to ensure high-quality stock inputs for portfolio formation. Then, the predicted results are integrated into the MV model. To comprehensively demonstrate the superiority of the proposed model, we used two portfolio models, the MV model and the equal-weight portfolio (1/N) model, with LSTM, BiLSTM, and CNN-BiLSTM, and employed them as benchmarks. Between January 2015 and December 2020, historical data from the Stock Exchange of Thailand 50 Index (SET50) were collected for the study. The experiment shows that integrating preselection of stocks can improve MV performance, and the results of the proposed method show that they outperform comparison models in terms of Sharpe ratio, mean return, and risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Sylvia完成签到,获得积分10
2秒前
2秒前
3秒前
思源应助888采纳,获得10
3秒前
小野猫发布了新的文献求助10
4秒前
6秒前
安然发布了新的文献求助10
6秒前
7秒前
Colossus完成签到,获得积分10
7秒前
科研通AI2S应助Zack采纳,获得10
7秒前
幽默果汁发布了新的文献求助10
7秒前
华仔应助小宋同学采纳,获得10
7秒前
田様应助Youth采纳,获得10
8秒前
cy完成签到,获得积分10
9秒前
隋阳完成签到 ,获得积分10
9秒前
10秒前
10秒前
迷迭香完成签到,获得积分10
10秒前
叶帆发布了新的文献求助10
10秒前
Docgrace完成签到,获得积分20
11秒前
司空豁发布了新的文献求助10
12秒前
12秒前
伊斯塔发布了新的文献求助10
12秒前
13秒前
迷迭香发布了新的文献求助10
13秒前
噗噗xie发布了新的文献求助10
14秒前
乐观德地完成签到,获得积分10
14秒前
天边的云彩完成签到 ,获得积分0
15秒前
打打应助ZLY采纳,获得10
16秒前
16秒前
16秒前
帕芙芙发布了新的文献求助10
17秒前
研友_yLpzpZ完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
刘瑶发布了新的文献求助10
19秒前
可爱的函函应助小野猫采纳,获得30
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502568
关于积分的说明 11108738
捐赠科研通 3233292
什么是DOI,文献DOI怎么找? 1787239
邀请新用户注册赠送积分活动 870565
科研通“疑难数据库(出版商)”最低求助积分说明 802122