亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼宛秋发布了新的文献求助10
5秒前
拾新发布了新的文献求助10
6秒前
舒适的涑完成签到 ,获得积分10
13秒前
拾新完成签到,获得积分10
14秒前
星辰大海应助doublenine18采纳,获得10
26秒前
30秒前
舒适的涑发布了新的文献求助10
37秒前
小鱼儿关注了科研通微信公众号
39秒前
51秒前
小鱼儿发布了新的文献求助10
52秒前
1分钟前
tracyzhang完成签到 ,获得积分10
1分钟前
doublenine18发布了新的文献求助10
1分钟前
科研通AI6应助akram123采纳,获得10
1分钟前
1分钟前
危机的元风完成签到 ,获得积分10
1分钟前
Bearbiscuit发布了新的文献求助10
1分钟前
shaylie完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
太极完成签到 ,获得积分10
2分钟前
2分钟前
曹静槐发布了新的文献求助10
2分钟前
2分钟前
zenabia完成签到 ,获得积分10
2分钟前
hb完成签到,获得积分0
3分钟前
3分钟前
3分钟前
3分钟前
嘉宾发布了新的文献求助10
3分钟前
3分钟前
深海发布了新的文献求助10
3分钟前
嘉宾发布了新的文献求助10
3分钟前
3分钟前
3分钟前
akram123发布了新的文献求助10
3分钟前
深海完成签到,获得积分10
3分钟前
鸽子爱好者完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639584
求助须知:如何正确求助?哪些是违规求助? 4749049
关于积分的说明 15006714
捐赠科研通 4797744
什么是DOI,文献DOI怎么找? 2563822
邀请新用户注册赠送积分活动 1522749
关于科研通互助平台的介绍 1482454