Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙成发布了新的文献求助10
1秒前
裁缝戴发布了新的文献求助10
1秒前
超级的诗兰完成签到,获得积分10
2秒前
美味吐司发布了新的文献求助20
2秒前
4秒前
张宇龙关注了科研通微信公众号
5秒前
震动的听安完成签到,获得积分10
5秒前
5秒前
情怀应助北月南弦采纳,获得10
6秒前
今后应助膜拜里采纳,获得10
6秒前
打打应助孙成采纳,获得10
7秒前
Marcus完成签到,获得积分10
8秒前
白华苍松完成签到,获得积分10
8秒前
张张发布了新的文献求助10
8秒前
fancy完成签到 ,获得积分10
9秒前
风清扬发布了新的文献求助10
10秒前
小y完成签到 ,获得积分10
11秒前
luochunsheng完成签到,获得积分10
11秒前
声声慢完成签到,获得积分10
12秒前
风吹完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
Kenny发布了新的文献求助10
13秒前
13秒前
哈哈的哈哈应助lsr采纳,获得20
14秒前
14秒前
白华苍松发布了新的文献求助20
14秒前
酷炫甜瓜完成签到,获得积分10
17秒前
allia完成签到 ,获得积分10
17秒前
张张完成签到,获得积分10
20秒前
幽默的雁开完成签到,获得积分10
21秒前
mobay完成签到,获得积分20
22秒前
22秒前
22秒前
超人发布了新的文献求助10
23秒前
顾矜应助琉璃采纳,获得10
23秒前
24秒前
24秒前
25秒前
自由的便当完成签到,获得积分10
25秒前
风中冰香应助细腻半仙采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428202
求助须知:如何正确求助?哪些是违规求助? 4542308
关于积分的说明 14179543
捐赠科研通 4459846
什么是DOI,文献DOI怎么找? 2445511
邀请新用户注册赠送积分活动 1436703
关于科研通互助平台的介绍 1413878