Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
S月小小完成签到,获得积分10
刚刚
doc.level完成签到,获得积分10
1秒前
1秒前
1秒前
小小王科研完成签到,获得积分10
1秒前
iu完成签到,获得积分10
1秒前
2秒前
hollow完成签到,获得积分10
2秒前
好多鱼爱学习给好多鱼爱学习的求助进行了留言
2秒前
sll完成签到 ,获得积分10
2秒前
雪白的雪完成签到,获得积分10
2秒前
机智迎夏完成签到,获得积分10
2秒前
Jess完成签到,获得积分10
2秒前
void科学家发布了新的文献求助10
2秒前
兴奋白枫完成签到,获得积分10
2秒前
孙温柔完成签到,获得积分10
3秒前
王SQ完成签到,获得积分10
3秒前
感谢琪求好运转发科研通微信,获得积分50
3秒前
华莉变身发布了新的文献求助10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
4秒前
wwww完成签到,获得积分10
4秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
dynamoo应助科研通管家采纳,获得10
5秒前
温柔的语柔完成签到,获得积分10
5秒前
李健应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
地表飞猪应助科研通管家采纳,获得10
5秒前
含蓄的砖家完成签到,获得积分10
6秒前
地表飞猪应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助克林沙星采纳,获得10
7秒前
Aurora完成签到 ,获得积分10
7秒前
7秒前
夜月完成签到,获得积分20
7秒前
干净的沛蓝完成签到 ,获得积分10
7秒前
ldkl完成签到,获得积分0
7秒前
浮游应助long采纳,获得10
7秒前
量子星尘发布了新的文献求助100
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5235264
求助须知:如何正确求助?哪些是违规求助? 4403733
关于积分的说明 13703838
捐赠科研通 4271112
什么是DOI,文献DOI怎么找? 2343888
邀请新用户注册赠送积分活动 1341076
关于科研通互助平台的介绍 1298572