已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助茉莉采纳,获得10
2秒前
大模型应助李玲玲采纳,获得10
2秒前
4秒前
飘逸晓蕾发布了新的文献求助10
4秒前
5秒前
leena完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
8秒前
10秒前
11秒前
11秒前
12秒前
科研狗发布了新的文献求助10
12秒前
科研通AI6应助紫枫采纳,获得10
12秒前
浮游应助pluto采纳,获得10
12秒前
12秒前
xxsukixx发布了新的文献求助30
13秒前
15秒前
乔达摩悉达多完成签到 ,获得积分10
15秒前
现代大米发布了新的文献求助10
16秒前
诚心的惜灵完成签到 ,获得积分10
16秒前
17秒前
科研通AI6应助xxsukixx采纳,获得10
19秒前
19秒前
20秒前
Yaon-Xu完成签到,获得积分10
20秒前
21秒前
cyclone发布了新的文献求助10
21秒前
22秒前
一只呆呆完成签到 ,获得积分10
23秒前
Tang完成签到,获得积分10
24秒前
甘泊寓发布了新的文献求助10
25秒前
Ava应助瑾sir采纳,获得10
26秒前
Tang发布了新的文献求助10
28秒前
陈龙驳回了nn应助
28秒前
30秒前
30秒前
美满的绮兰完成签到,获得积分10
31秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584385
求助须知:如何正确求助?哪些是违规求助? 4667930
关于积分的说明 14770290
捐赠科研通 4610525
什么是DOI,文献DOI怎么找? 2529830
邀请新用户注册赠送积分活动 1498844
关于科研通互助平台的介绍 1467321