Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zd完成签到,获得积分20
1秒前
李宁完成签到,获得积分10
1秒前
lyzhou发布了新的文献求助20
1秒前
1秒前
2秒前
3秒前
冰琪发布了新的文献求助10
4秒前
绿光之城发布了新的文献求助30
4秒前
4秒前
4秒前
天明发布了新的文献求助10
4秒前
我是老大应助文文尔雅采纳,获得10
5秒前
6秒前
6秒前
6秒前
知性的千秋完成签到,获得积分10
7秒前
eye完成签到,获得积分10
7秒前
7秒前
8秒前
小兔子发布了新的文献求助10
9秒前
在水一方应助粗心的凡阳采纳,获得10
9秒前
Yan应助半岛采纳,获得20
9秒前
10秒前
NexusExplorer应助开朗的觅柔采纳,获得10
10秒前
10秒前
eye发布了新的文献求助10
10秒前
zzl完成签到,获得积分10
12秒前
Jasper应助俊逸的蜜蜂采纳,获得10
12秒前
yoke完成签到,获得积分10
12秒前
11发布了新的文献求助10
12秒前
12秒前
棉花发布了新的文献求助10
13秒前
Grinder发布了新的文献求助10
13秒前
绿光之城完成签到,获得积分20
13秒前
yio发布了新的文献求助10
13秒前
rmbsLHC发布了新的文献求助10
14秒前
14秒前
lwz2688完成签到,获得积分10
14秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953