Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助水123采纳,获得10
刚刚
学术牛马发布了新的文献求助10
1秒前
1秒前
子车茗应助丁真人采纳,获得30
1秒前
无机盐发布了新的文献求助10
1秒前
3秒前
张静瑶完成签到,获得积分10
3秒前
群山完成签到 ,获得积分10
4秒前
4秒前
冷酷的水壶完成签到,获得积分10
5秒前
5秒前
雾山五行发布了新的文献求助10
7秒前
希望天下0贩的0应助Alan采纳,获得10
7秒前
脑洞疼应助熊熊阁采纳,获得10
7秒前
打打应助xiaoyao采纳,获得10
7秒前
8秒前
鲲kun完成签到,获得积分10
8秒前
8秒前
科研通AI6应助wwl采纳,获得10
8秒前
良景似尘完成签到,获得积分10
9秒前
聪慧的白猫完成签到,获得积分10
9秒前
财路通八方完成签到 ,获得积分10
9秒前
LL完成签到,获得积分10
10秒前
好好学习发布了新的文献求助10
10秒前
11秒前
华仔应助终抵星空采纳,获得10
11秒前
田様应助等待的凝芙采纳,获得10
11秒前
共享精神应助仁仁仁采纳,获得10
11秒前
文盲文案完成签到,获得积分10
12秒前
子晓时夜完成签到,获得积分10
13秒前
wen完成签到,获得积分10
13秒前
13秒前
大个应助单薄的发卡采纳,获得10
13秒前
Hello应助123采纳,获得10
13秒前
Hello应助无机盐采纳,获得10
14秒前
研友_ZzwoR8完成签到 ,获得积分10
15秒前
开朗指甲油完成签到,获得积分10
16秒前
16秒前
小蘑菇应助好好学习采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186