Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljy2015完成签到 ,获得积分10
3秒前
leaolf应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
laber应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
4秒前
John发布了新的文献求助30
7秒前
达克赛德完成签到 ,获得积分10
10秒前
钟小先生完成签到 ,获得积分10
14秒前
aaatan完成签到 ,获得积分10
16秒前
十月完成签到 ,获得积分10
16秒前
不想长大完成签到 ,获得积分10
20秒前
21秒前
刘zoey发布了新的文献求助10
25秒前
25秒前
量子星尘发布了新的文献求助10
31秒前
情怀应助刘zoey采纳,获得10
32秒前
槿曦完成签到 ,获得积分10
33秒前
浅池星完成签到 ,获得积分10
37秒前
听寒完成签到,获得积分10
37秒前
mia完成签到,获得积分10
38秒前
谢花花完成签到 ,获得积分10
42秒前
失眠的向日葵完成签到 ,获得积分10
47秒前
量子星尘发布了新的文献求助10
50秒前
奥丁蒂法完成签到,获得积分10
53秒前
想喝冰美完成签到,获得积分10
53秒前
火星上小土豆完成签到 ,获得积分10
56秒前
故槿完成签到 ,获得积分10
59秒前
向阳而生o完成签到,获得积分10
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
冲冲冲完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
拾玖完成签到 ,获得积分10
1分钟前
吴天春完成签到,获得积分10
1分钟前
Bruce发布了新的文献求助10
1分钟前
自渡完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910714
求助须知:如何正确求助?哪些是违规求助? 4186402
关于积分的说明 12999553
捐赠科研通 3953936
什么是DOI,文献DOI怎么找? 2168187
邀请新用户注册赠送积分活动 1186604
关于科研通互助平台的介绍 1093845