已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到 ,获得积分10
6秒前
8秒前
9秒前
土豪的行云完成签到,获得积分10
10秒前
12秒前
12秒前
relink完成签到,获得积分10
13秒前
les3发布了新的文献求助10
17秒前
李健的小迷弟应助hyr采纳,获得10
19秒前
萧水白发布了新的文献求助100
19秒前
20秒前
mue完成签到,获得积分10
21秒前
思源应助蔡6705采纳,获得10
23秒前
24秒前
25秒前
28秒前
29秒前
30秒前
大巧不工发布了新的文献求助10
30秒前
今后应助外汇交易员采纳,获得10
31秒前
31秒前
hyr发布了新的文献求助10
31秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
香蕉觅云应助科研通管家采纳,获得10
33秒前
地表飞猪应助科研通管家采纳,获得10
33秒前
33秒前
iNk应助科研通管家采纳,获得20
33秒前
llp发布了新的文献求助20
35秒前
蔡6705发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
36秒前
深情安青应助zihangzeng采纳,获得10
37秒前
繁荣的代秋完成签到 ,获得积分10
39秒前
烂漫向卉完成签到,获得积分10
41秒前
42秒前
外汇交易员完成签到,获得积分10
42秒前
43秒前
44秒前
46秒前
47秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520603
关于积分的说明 11204100
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806570