Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶拿铁加奶砖完成签到 ,获得积分10
刚刚
大西瓜发布了新的文献求助20
刚刚
lenaimiao完成签到,获得积分10
1秒前
海藻完成签到,获得积分10
2秒前
Lee发布了新的文献求助10
2秒前
2秒前
轻松的水壶完成签到 ,获得积分10
2秒前
碎碎念s完成签到,获得积分10
2秒前
勤奋的天亦完成签到,获得积分10
2秒前
烟花应助xhsz1111采纳,获得10
2秒前
司空悒完成签到,获得积分0
3秒前
bird完成签到,获得积分10
4秒前
烟花应助吃宝宝采纳,获得10
4秒前
4秒前
LiuXiaoJie完成签到,获得积分10
4秒前
微纳组刘同完成签到,获得积分10
4秒前
4秒前
幽默的醉冬完成签到,获得积分10
4秒前
hhhhh完成签到 ,获得积分10
5秒前
汐风完成签到,获得积分10
5秒前
5秒前
小高发布了新的文献求助10
6秒前
6秒前
6秒前
薛得豪完成签到,获得积分10
7秒前
Leon完成签到,获得积分10
7秒前
murphy完成签到,获得积分10
7秒前
无花果应助顺利的奇异果采纳,获得10
8秒前
薛人英完成签到,获得积分10
8秒前
8秒前
七瑾发布了新的文献求助10
10秒前
大马哈鱼发布了新的文献求助10
11秒前
12秒前
YT完成签到,获得积分10
12秒前
li完成签到,获得积分10
13秒前
贝贝发布了新的文献求助30
13秒前
高大的战斗机完成签到,获得积分10
13秒前
学习完成签到,获得积分10
13秒前
大个应助yanziwu94采纳,获得10
13秒前
文静的寒松完成签到,获得积分10
14秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5387611
求助须知:如何正确求助?哪些是违规求助? 4509621
关于积分的说明 14032074
捐赠科研通 4420457
什么是DOI,文献DOI怎么找? 2428263
邀请新用户注册赠送积分活动 1420857
关于科研通互助平台的介绍 1400038