Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lull发布了新的文献求助10
2秒前
3秒前
所所应助失眠的青寒采纳,获得10
6秒前
meimei发布了新的文献求助10
6秒前
7秒前
SciGPT应助科研通管家采纳,获得10
11秒前
11秒前
大个应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
13秒前
15秒前
meimei完成签到,获得积分10
16秒前
小蘑菇应助科研小菜鸟采纳,获得10
18秒前
19秒前
jumao1999发布了新的文献求助10
19秒前
天天快乐应助mmill采纳,获得10
19秒前
芍药完成签到 ,获得积分10
20秒前
sophieCCM0302发布了新的文献求助10
20秒前
hsj发布了新的文献求助10
22秒前
lull发布了新的文献求助10
22秒前
斯文败类应助熊二浪采纳,获得10
26秒前
27秒前
Jasper应助yuyu采纳,获得10
28秒前
28秒前
完美世界应助sophieCCM0302采纳,获得10
29秒前
禾平完成签到 ,获得积分10
31秒前
情怀应助海生阳采纳,获得50
32秒前
Soft发布了新的文献求助10
33秒前
深情安青应助临风采纳,获得100
35秒前
无花果应助精明的天抒采纳,获得10
36秒前
38秒前
苞大米完成签到,获得积分10
39秒前
39秒前
上官若男应助淼淼之锋采纳,获得10
40秒前
41秒前
43秒前
熊二浪发布了新的文献求助10
43秒前
45秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346534
求助须知:如何正确求助?哪些是违规求助? 2973237
关于积分的说明 8658336
捐赠科研通 2653621
什么是DOI,文献DOI怎么找? 1453288
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662717