Machine Learning Based Approach for Prediction of Hood Oilcanning Performances

计算机科学 人工智能 机器学习 屈曲 汽车工业 算法 工程类 结构工程 航空航天工程
作者
Arunkumar Srinivasan,S Aravamuthan,Bellamkonda Madhurya,Suhas S Kangde
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-0598
摘要

<div class="section abstract"><div class="htmlview paragraph">Computer Aided Engineering (CAE) simulations are an integral part of the product development process in an automotive industry. The conventional approach involving pre-processing, solving and post-processing is highly time-consuming. Emerging digital technologies such as Machine Learning (ML) can be implemented in early stage of product development cycle to predict key performances without need of traditional CAE. Oil Canning loadcase simulates the displacement and buckling behavior of vehicle outer styling panels. A ML model trained using historical oil canning simulation results can be used to predict the maximum displacement and classify buckling locations. This enables product development team in faster decision making and reduces overall turnaround time. Oil canning FE model features such as stiffness, distance from constraints, etc., are extracted for training database of the ML model. Initially, 32 model features were extracted from the FE model. Domain expertise and variable selection techniques were implemented to clean up the database for dependencies and duplicates. This resulted in identification of 21 key parameters for training the ML model. Database for buckling classification model is highly skewed with only 5% data points with buckling. Synthetic data is generated using SMOTE algorithm to overcome data imbalance. These features are then used to train and validate the ML model for buckling. Predictive model developed using Extreme Gradient boosting (XG Boost) algorithm with R<sup>2</sup> more than 90% for training and test datasets. It predicted maximum displacement with 20% error for 80% test data points. Also, buckling data points are classified with 98% accuracy. Prediction made using the ML model is in good agreement (&lt; 20% error) with CAE results. This resulted in substantial time savings from 11 days to 30 minutes for the prediction of key performances.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
自由的鹏涛完成签到,获得积分20
5秒前
6秒前
在水一方应助Nayvue采纳,获得10
6秒前
9秒前
Ryan完成签到,获得积分10
10秒前
General完成签到 ,获得积分10
10秒前
谦让汝燕完成签到,获得积分10
12秒前
wellyou完成签到,获得积分10
13秒前
mint完成签到,获得积分10
15秒前
afli完成签到 ,获得积分0
18秒前
19秒前
Yy完成签到 ,获得积分10
22秒前
Nayvue发布了新的文献求助10
24秒前
feng完成签到,获得积分10
24秒前
淡淡的小蘑菇完成签到 ,获得积分10
27秒前
G_Serron完成签到,获得积分10
28秒前
swordshine完成签到,获得积分10
28秒前
Anonymous完成签到,获得积分10
32秒前
medzhou完成签到,获得积分10
36秒前
儒雅的千秋完成签到,获得积分10
44秒前
普鲁卡因发布了新的文献求助10
47秒前
小雯完成签到,获得积分10
48秒前
搞怪梦寒完成签到,获得积分20
49秒前
喵了个咪完成签到 ,获得积分10
50秒前
mc完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
55秒前
56秒前
56秒前
虚幻谷波完成签到,获得积分10
58秒前
ruochenzu发布了新的文献求助10
1分钟前
小马甲应助搞怪梦寒采纳,获得10
1分钟前
firewood完成签到 ,获得积分10
1分钟前
天天快乐应助普鲁卡因采纳,获得10
1分钟前
orixero应助NXK采纳,获得10
1分钟前
bjr完成签到 ,获得积分10
1分钟前
研友_LwlAgn完成签到,获得积分10
1分钟前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022