Congressional Apportionment: A Multiobjective Optimization Approach

分摊 多目标优化 数学优化 计算机科学 运筹学 管理科学 经济 数学 政治学 法学
作者
Steven M. Shechter
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.02472
摘要

Two events, with major implications for U.S. voters, occur after each decennial census. First, congressional “apportionment” takes place, followed by congressional “districting.” Apportionment determines how to allocate the 435 seats in the House of Representatives across the 50 states, whereas districting determines the geographic boundaries assigned to representatives within each state. Although districting and the practice of gerrymandering often receive great attention in the media and courts, the best way to apportion representatives across states has been debated for nearly 250 years. Historical methods (including the current method) each satisfy some desirable optimality criteria that the others are not guaranteed to satisfy. Moreover, none are guaranteed to optimize certain reasonable fairness measures (e.g., minimum range, minimum bias). To our knowledge, we are the first to formulate and analyze a multiobjective optimization approach to apportionment, allowing policymakers to identify Pareto-optimal allocations and quantify their trade-offs between several competing criteria. Some of these models can be formulated and solved as mixed-integer linear programs, whereas others require the solution of mixed-integer, nonconvex, quadratically constrained quadratic programs. We take advantage of recent software advances that allow one to solve these problems with optimality guarantees. Policy implications of our work include Pareto curves from historical censuses and simulations, which suggest opportunities for improvement in some objectives at little sacrifice to others. This paper was accepted by David Simchi-Levi, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.02472 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9℃发布了新的文献求助10
刚刚
甩看文献完成签到,获得积分10
刚刚
刚刚
欣喜书桃关注了科研通微信公众号
1秒前
1秒前
真实的熊猫完成签到,获得积分10
1秒前
小张不慌完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
十三完成签到,获得积分10
3秒前
juan发布了新的文献求助10
3秒前
丘比特应助白小白采纳,获得10
3秒前
3秒前
晓军发布了新的文献求助20
3秒前
4秒前
zxl完成签到,获得积分10
5秒前
专心搞学术完成签到,获得积分10
5秒前
FFF发布了新的文献求助10
5秒前
李小胖发布了新的文献求助20
5秒前
李健应助故意的绿竹采纳,获得10
5秒前
勤恳的断秋完成签到 ,获得积分10
6秒前
VDC发布了新的文献求助10
6秒前
6秒前
jasmine970000发布了新的文献求助100
6秒前
酷波er应助camellia采纳,获得10
7秒前
Zoe发布了新的文献求助10
7秒前
7秒前
7秒前
啊实打实完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
参上完成签到,获得积分10
10秒前
mingjie完成签到,获得积分10
10秒前
yam001完成签到,获得积分10
10秒前
aaaaa发布了新的文献求助10
10秒前
11秒前
牧紫菱完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762