亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Congressional Apportionment: A Multiobjective Optimization Approach

分摊 多目标优化 数学优化 计算机科学 运筹学 管理科学 经济 数学 政治学 法学
作者
Steven M. Shechter
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.02472
摘要

Two events, with major implications for U.S. voters, occur after each decennial census. First, congressional “apportionment” takes place, followed by congressional “districting.” Apportionment determines how to allocate the 435 seats in the House of Representatives across the 50 states, whereas districting determines the geographic boundaries assigned to representatives within each state. Although districting and the practice of gerrymandering often receive great attention in the media and courts, the best way to apportion representatives across states has been debated for nearly 250 years. Historical methods (including the current method) each satisfy some desirable optimality criteria that the others are not guaranteed to satisfy. Moreover, none are guaranteed to optimize certain reasonable fairness measures (e.g., minimum range, minimum bias). To our knowledge, we are the first to formulate and analyze a multiobjective optimization approach to apportionment, allowing policymakers to identify Pareto-optimal allocations and quantify their trade-offs between several competing criteria. Some of these models can be formulated and solved as mixed-integer linear programs, whereas others require the solution of mixed-integer, nonconvex, quadratically constrained quadratic programs. We take advantage of recent software advances that allow one to solve these problems with optimality guarantees. Policy implications of our work include Pareto curves from historical censuses and simulations, which suggest opportunities for improvement in some objectives at little sacrifice to others. This paper was accepted by David Simchi-Levi, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.02472 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞发布了新的文献求助10
1秒前
wzzznh完成签到 ,获得积分10
4秒前
9秒前
烟消云散完成签到,获得积分10
12秒前
we1发布了新的文献求助10
15秒前
感动的白梅完成签到 ,获得积分10
16秒前
飞飞完成签到,获得积分10
17秒前
xxxxxxxxx完成签到 ,获得积分10
19秒前
we1完成签到,获得积分10
21秒前
在水一方应助哈哈哈采纳,获得10
37秒前
有信心完成签到 ,获得积分10
45秒前
46秒前
46秒前
白露完成签到 ,获得积分10
49秒前
Jia发布了新的文献求助10
52秒前
57秒前
酷波er应助科研通管家采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得30
1分钟前
dawnfrf应助科研通管家采纳,获得10
1分钟前
dawnfrf应助科研通管家采纳,获得10
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
科研通AI6.1应助牛油果采纳,获得10
1分钟前
番茄鱼完成签到 ,获得积分10
1分钟前
Jia完成签到,获得积分20
1分钟前
1分钟前
1分钟前
只谈风月发布了新的文献求助10
1分钟前
yiyi完成签到,获得积分10
1分钟前
牛油果发布了新的文献求助10
1分钟前
长言完成签到 ,获得积分10
1分钟前
彭于晏应助floaoat采纳,获得10
1分钟前
1分钟前
zeze发布了新的文献求助10
1分钟前
铭铭完成签到,获得积分10
1分钟前
一米六关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
洋葱发布了新的文献求助10
2分钟前
一米六发布了新的文献求助10
2分钟前
慕青应助牛油果采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763922
求助须知:如何正确求助?哪些是违规求助? 5545655
关于积分的说明 15405616
捐赠科研通 4899439
什么是DOI,文献DOI怎么找? 2635557
邀请新用户注册赠送积分活动 1583744
关于科研通互助平台的介绍 1538830