Congressional Apportionment: A Multiobjective Optimization Approach

分摊 多目标优化 数学优化 计算机科学 运筹学 管理科学 经济 数学 政治学 法学
作者
Steven M. Shechter
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.02472
摘要

Two events, with major implications for U.S. voters, occur after each decennial census. First, congressional “apportionment” takes place, followed by congressional “districting.” Apportionment determines how to allocate the 435 seats in the House of Representatives across the 50 states, whereas districting determines the geographic boundaries assigned to representatives within each state. Although districting and the practice of gerrymandering often receive great attention in the media and courts, the best way to apportion representatives across states has been debated for nearly 250 years. Historical methods (including the current method) each satisfy some desirable optimality criteria that the others are not guaranteed to satisfy. Moreover, none are guaranteed to optimize certain reasonable fairness measures (e.g., minimum range, minimum bias). To our knowledge, we are the first to formulate and analyze a multiobjective optimization approach to apportionment, allowing policymakers to identify Pareto-optimal allocations and quantify their trade-offs between several competing criteria. Some of these models can be formulated and solved as mixed-integer linear programs, whereas others require the solution of mixed-integer, nonconvex, quadratically constrained quadratic programs. We take advantage of recent software advances that allow one to solve these problems with optimality guarantees. Policy implications of our work include Pareto curves from historical censuses and simulations, which suggest opportunities for improvement in some objectives at little sacrifice to others. This paper was accepted by David Simchi-Levi, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.02472 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助曹梦梦采纳,获得10
2秒前
3秒前
3秒前
3秒前
午夜大狂风完成签到,获得积分10
3秒前
3秒前
研友_Z60ObL发布了新的文献求助10
4秒前
你好发布了新的文献求助30
4秒前
4秒前
4秒前
5秒前
善良盼雁完成签到,获得积分10
5秒前
5秒前
5秒前
跳跃火车发布了新的文献求助10
6秒前
123发布了新的文献求助10
6秒前
May完成签到,获得积分10
6秒前
6秒前
jjj发布了新的文献求助10
6秒前
7秒前
8秒前
NexusExplorer应助蝎子莱莱采纳,获得10
8秒前
可爱的函函应助May采纳,获得10
9秒前
VTM发布了新的文献求助10
9秒前
在水一方应助健壮的幻波采纳,获得10
9秒前
邬从云发布了新的文献求助10
10秒前
专注忆南发布了新的文献求助10
10秒前
窝窝头发布了新的文献求助10
10秒前
walker完成签到,获得积分10
11秒前
情怀应助Wy13zzzZ采纳,获得10
13秒前
cqc发布了新的文献求助10
13秒前
13秒前
彭于晏应助546hgu采纳,获得10
14秒前
bkagyin应助羊羊羊采纳,获得10
14秒前
tianzml0应助邬从云采纳,获得20
15秒前
SciGPT应助nav采纳,获得10
15秒前
大模型应助remind采纳,获得10
16秒前
王巧巧完成签到,获得积分10
17秒前
17秒前
wanci应助明明就采纳,获得10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157968
求助须知:如何正确求助?哪些是违规求助? 2809296
关于积分的说明 7881421
捐赠科研通 2467814
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630502
版权声明 601943