已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SATCN: An Improved Temporal Convolutional Neural Network with Self Attention Mechanism for Knowledge Tracing

遗忘 计算机科学 追踪 机制(生物学) 透视图(图形) 卷积神经网络 人工智能 依赖关系(UML) 机器学习 认知心理学 心理学 认识论 操作系统 哲学
作者
Ruixin Ma,Hongyan Zhang,Biao Mei,Guangyue Lv,Liang Zhao
出处
期刊:Communications in computer and information science 卷期号:: 3-17
标识
DOI:10.1007/978-981-99-2443-1_1
摘要

With the rapid expansion of E-education, knowledge tracing (KT) has become a fundamental mission which traces the formation of learners’ knowledge states and predicts their performance in future learnng activates. Knowledge states of each learner are simulated by estimating their behavior in historical learning activities. There are often numerous questions in online education systems while researches in the past fails to involve massive data together with negative historical data problems, which is mainly limited by data sparsity issues and models. From the model perspective, previous models can hardly capture the long-term dependency of learner historical exercises, and model the individual learning behavior in a consistent manner is also hard to accomplish. Therefore, in this paper, we develop an Improved Temporal Convolutional Neural Network with Self Attention Mechanism for Knowledge Tracing (SATCN). It can take the historical exercises of each learner as input and model the individual learning in a consistent manner that means it can realize personalized knowledge tracking prediction without extra manipulations. Moreover, with the self attention mechanism our model can adjust weights adaptively, thus to intelligently weaken the influence of those negative historical data, and highlight those historical data that have greater impact on the prediction results. We also take attempt count and answer time two features into account, considering proficiency and forgetting of the learners to enrich the input features. Empirical experiments on three widely used real-world public datasets clearly demonstrate that our framework outperforms the presented state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Jane发布了新的文献求助10
3秒前
5秒前
5秒前
loko完成签到,获得积分10
6秒前
6秒前
临时完成签到,获得积分10
7秒前
禾火完成签到 ,获得积分10
7秒前
丁丁完成签到,获得积分20
10秒前
Yong发布了新的文献求助10
10秒前
FashionBoy应助Lcrainy采纳,获得10
11秒前
13秒前
lbl234完成签到,获得积分10
19秒前
shaw完成签到,获得积分10
19秒前
一页书完成签到,获得积分10
20秒前
丁丁发布了新的文献求助10
20秒前
ganzhongxin发布了新的文献求助10
23秒前
8R60d8应助fishcool采纳,获得10
24秒前
曼容发布了新的文献求助10
24秒前
李爱国应助1952采纳,获得10
28秒前
lbl234发布了新的文献求助10
28秒前
31秒前
33秒前
情怀应助曼容采纳,获得10
36秒前
小毛发布了新的文献求助10
37秒前
轨迹发布了新的文献求助10
38秒前
41秒前
43秒前
jiunuan应助祺仔采纳,获得10
43秒前
徐小树完成签到,获得积分10
48秒前
49秒前
49秒前
不安的蓝血完成签到,获得积分20
51秒前
53秒前
徐小树发布了新的文献求助10
53秒前
57秒前
1分钟前
三石SUN发布了新的文献求助10
1分钟前
凹凸先森应助机智的砖家采纳,获得20
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330247
求助须知:如何正确求助?哪些是违规求助? 2959843
关于积分的说明 8597367
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444234
科研通“疑难数据库(出版商)”最低求助积分说明 669078
邀请新用户注册赠送积分活动 656628