3d打印
软质材料
植物生理学
化学成分
食品科学
生物技术
化学
生化工程
生物
植物
材料科学
纳米技术
工程类
有机化学
生物医学工程
作者
Tianxiao Wang,Lovedeep Kaur,Akashdeep Singh Beniwal,Yasufumi Furuhata,Hiroaki Aoyama,Jaspreet Singh
标识
DOI:10.1007/s11130-023-01068-4
摘要
This study investigated the physico-chemical and textural properties of 3D-printed pea protein-only and pea protein-chicken-based hybrid meat analogs. Both pea protein isolate (PPI)-only and hybrid cooked meat analogs had a similar moisture content of approximately 70%, which was similar to that of chicken mince. However, the protein content increased significantly with the amount of chicken in the hybrid paste undergoing 3D printing and cooking. Significant differences were observed in the hardness values of the non-printed cooked pastes and the 3D printed cooked counterparts, suggesting that the 3D printing process reduces the hardness of the samples and is a suitable method to produce a soft meal, and has significant potential in elderly health care. Scanning electron microscopy (SEM) revealed that adding chicken to the plant protein matrix led to better fiber formation. PPI itself was not able to form any fibers merely by 3D printing and cooking in boiling water. Protein-protein interactions were also studied through the protein solubility test, which indicated that hydrogen bonding was the major bonding that contributed to the structure formation in cooked printed meat analogs. In addition, disulfide bonding was correlated with improved fibrous structures, as observed through SEM.
科研通智能强力驱动
Strongly Powered by AbleSci AI