EEG emotion recognition using attention-based convolutional transformer neural network

计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 语音识别 变压器 心理学 神经科学 电压 物理 量子力学
作者
Linlin Gong,Mingyang Li,Tao Zhang,Wanzhong Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:84: 104835-104835 被引量:35
标识
DOI:10.1016/j.bspc.2023.104835
摘要

EEG-based emotion recognition has become an important task in affective computing and intelligent interaction. However, how to effectively combine the spatial, spectral, and temporal distinguishable information of EEG signals to achieve better emotion recognition performance is still a challenge. In this paper, we propose a novel attention-based convolutional transformer neural network (ACTNN), which effectively integrates the crucial spatial, spectral, and temporal information of EEG signals, and cascades convolutional neural network and transformer in a new way for emotion recognition task. We first organized EEG signals into spatial–spectral–temporal representations. To enhance the distinguishability of features, spatial and spectral attention masks are learned for the representation of each time slice. Then, a convolutional module is used to extract local spatial and spectral features. Finally, we concatenate the features of all time slices, and feed them into the transformer-based temporal encoding layer to use multi-head self-attention for global feature awareness. The average recognition accuracy of the proposed ACTNN on two public datasets, namely SEED and SEED-IV, is 98.47% and 91.90% respectively, outperforming the state-of-the-art methods. Besides, to explore the underlying reasoning process of the model and its neuroscience relevance with emotion, we further visualize spatial and spectral attention masks. The attention weight distribution shows that the activities of prefrontal lobe and lateral temporal lobe of the brain, and the gamma band of EEG signals might be more related to human emotion. The proposed ACTNN can be employed as a promising framework for EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinzx完成签到,获得积分10
刚刚
科研通AI2S应助立方糖采纳,获得10
1秒前
hahaha完成签到,获得积分10
1秒前
2秒前
勤恳友灵发布了新的文献求助30
2秒前
wei发布了新的文献求助10
3秒前
caohai完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
……发布了新的文献求助30
4秒前
5秒前
5秒前
暗能量发布了新的文献求助10
6秒前
7秒前
小韩完成签到 ,获得积分10
7秒前
8秒前
9秒前
整齐靖儿完成签到,获得积分20
9秒前
千千完成签到,获得积分10
9秒前
李爱国应助123采纳,获得10
10秒前
无限的山水完成签到,获得积分10
10秒前
小月发布了新的文献求助10
10秒前
gg2关注了科研通微信公众号
11秒前
11秒前
11秒前
cqsuper完成签到,获得积分10
11秒前
一一应助Ru采纳,获得20
12秒前
思源应助宋小姐冲鸭采纳,获得10
12秒前
13秒前
Oliver_Pcf发布了新的文献求助10
13秒前
晓雅完成签到,获得积分20
14秒前
愤怒的超级兵完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
星辉斑斓完成签到,获得积分10
17秒前
17秒前
ding应助科研通管家采纳,获得10
17秒前
小月完成签到,获得积分10
18秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Academia de Coimbra: 1537-1990: história, praxe, boémia e estudo, partidas e piadas, organismos académicos 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120530
求助须知:如何正确求助?哪些是违规求助? 2771150
关于积分的说明 7706625
捐赠科研通 2426370
什么是DOI,文献DOI怎么找? 1288511
科研通“疑难数据库(出版商)”最低求助积分说明 621036
版权声明 600069