EEG emotion recognition using attention-based convolutional transformer neural network

计算机科学 脑电图 卷积神经网络 人工智能 模式识别(心理学) 语音识别 变压器 心理学 神经科学 电压 物理 量子力学
作者
Linlin Gong,Mingyang Li,Tao Zhang,Wanzhong Chen
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104835-104835 被引量:53
标识
DOI:10.1016/j.bspc.2023.104835
摘要

EEG-based emotion recognition has become an important task in affective computing and intelligent interaction. However, how to effectively combine the spatial, spectral, and temporal distinguishable information of EEG signals to achieve better emotion recognition performance is still a challenge. In this paper, we propose a novel attention-based convolutional transformer neural network (ACTNN), which effectively integrates the crucial spatial, spectral, and temporal information of EEG signals, and cascades convolutional neural network and transformer in a new way for emotion recognition task. We first organized EEG signals into spatial–spectral–temporal representations. To enhance the distinguishability of features, spatial and spectral attention masks are learned for the representation of each time slice. Then, a convolutional module is used to extract local spatial and spectral features. Finally, we concatenate the features of all time slices, and feed them into the transformer-based temporal encoding layer to use multi-head self-attention for global feature awareness. The average recognition accuracy of the proposed ACTNN on two public datasets, namely SEED and SEED-IV, is 98.47% and 91.90% respectively, outperforming the state-of-the-art methods. Besides, to explore the underlying reasoning process of the model and its neuroscience relevance with emotion, we further visualize spatial and spectral attention masks. The attention weight distribution shows that the activities of prefrontal lobe and lateral temporal lobe of the brain, and the gamma band of EEG signals might be more related to human emotion. The proposed ACTNN can be employed as a promising framework for EEG emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wzx发布了新的文献求助10
1秒前
1秒前
yyds发布了新的文献求助30
3秒前
4秒前
jasmine19919给jasmine19919的求助进行了留言
4秒前
4秒前
alick发布了新的文献求助10
4秒前
小M完成签到,获得积分10
5秒前
MAVS发布了新的文献求助10
5秒前
5秒前
张献忠发布了新的文献求助10
5秒前
研友_GZ3zRn发布了新的文献求助10
5秒前
6秒前
无私的芹应助山河入梦来采纳,获得10
7秒前
慕青应助banbieshenlu采纳,获得10
7秒前
7秒前
7秒前
8秒前
小二郎应助科研yuan小白采纳,获得10
8秒前
8秒前
yyy发布了新的文献求助10
9秒前
9秒前
9秒前
zhshyhy完成签到,获得积分10
10秒前
10秒前
挖掘机应助斯奈克采纳,获得200
10秒前
甜味白开水完成签到,获得积分10
11秒前
研友_ngX12Z发布了新的文献求助10
11秒前
花鸟风月evereo完成签到,获得积分10
11秒前
菠萝炒饭应助王三采纳,获得10
12秒前
pppy发布了新的文献求助10
12秒前
郭大王发布了新的文献求助10
12秒前
煜琪发布了新的文献求助10
13秒前
13秒前
crethy完成签到,获得积分10
13秒前
Henry发布了新的文献求助10
13秒前
Akim应助李明采纳,获得10
14秒前
tdd完成签到,获得积分10
14秒前
无私的芹应助黄俊采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180