光热治疗
介孔材料
纳米棒
泊洛沙姆
体内
介孔二氧化硅
化学
细胞毒性
二氧化硅
材料科学
核化学
生物物理学
纳米技术
体外
共聚物
有机化学
生物化学
催化作用
生物技术
冶金
生物
聚合物
作者
Aidin Mohammadi Zonouz,Sahar Taghavi,Sirous Nekooei,Khalil Abnous,Seyed Mohammad Taghdisi,Mohammad Ramezani,Mona Alibolandi
标识
DOI:10.1016/j.ijpharm.2024.124725
摘要
In the current study, a core-shell inorganic nanostructure comprising a gold nanorod core and -mesoporous manganese dioxide shell was synthesized. Then, the mesoporous manganese dioxide shell was loaded with doxorubicin (DOX) and then coated with pluronic F127 and pluronic F127-folic acid conjugate (1.5:1 wt ratio of pluronic F127: pluronic F127-folic acid conjugate) to prepare targeted final platform. In this design, mesoporous manganese dioxide acted as a reservoir for DOX loading, anti-hypoxia, and MRI contrast agent, while the gold nanorod core acted as a photothermal and CT scan imaging agent. DOX was encapsulated in the mesoporous manganese dioxide shell with a loading capacity and loading efficiency of 19.8 % ± 0.2 and 99.0 % ± 0.9, respectively. The in vitro release experiment showed the impact of glutathione (GSH), mildly acidic pH, and laser irradiating toward accelerated stimuli-responsive DOX release. The ·OH production of the prepared platform was verified by methylene blue (MB) decomposition reaction. Furthermore, thermal imaging exhibited the ability of the prepared platform to convert the NIR irradiation to heat. In vitro cytotoxicity tests on the folate receptor-positive 4 T1 cell line revealed the remarkable cytotoxicity of the targeted formulation compared to the nontargeted formulation (statistically significant). The MTT experiment demonstrated that exposure to laser 808 irradiation enhanced cytotoxicity of the targeted formulation (p < 0.0001). The production of ROS in 4 T1 cells following treatment with the targeted formulation was demonstrated by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Furthermore, in vivo investigations by implementing subcutaneous 4 T1 tumorized female BABL/c mice indicated that the prepared platform was an effective system in suppressing tumor growth by combining chemotherapy with PTT (photothermal therapy). Additionally, simultanous PTT and anti-hypoxic activity of this system showed potent tumor growth suppression impact. The percent of tumor size reduction in mice treated with FA-F127-DOX@Au-MnO
科研通智能强力驱动
Strongly Powered by AbleSci AI