Developing Practical Catalysts for High‐Current‐Density Water Electrolysis

材料科学 电解 电流(流体) 催化作用 电解水 电流密度 化学工程 纳米技术 电解质 电气工程 物理化学 电极 有机化学 化学 物理 量子力学 工程类
作者
Xiaohan Zhang,Chentian Cao,Tao Ling,Chao Ye,Jian Lü,Jieqiong Shan
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (45) 被引量:6
标识
DOI:10.1002/aenm.202402633
摘要

Abstract High‐current‐density water electrolysis is considered a promising technology for industrial‐scale green hydrogen production, which is of significant value to energy decarbonization and numerous sustainable industrial applications. To date, substantial research advancements are achieved in catalyst design for laboratory‐based water electrolysis. While the designed catalysts demonstrate remarkable performance at laboratory‐based low current densities, they suffer from marked deteriorations in both activity and long‐term stability under industrial‐level high‐current‐density operations. To provide a timely assessment that helps bridge the gap between laboratory‐scale fundamental research and industrial‐scale practical water electrolysis technology, here the current advancements in various commercial water electrolyzers are first systematically analyzed, then the key parameters including work temperature, current density, lifetime of stacks, cell efficiency, and capital cost of stacks are critically evaluated. In addition, the impact of high current density on the electrocatalytic behavior of catalysts, including intrinsic activity, long‐term stability, and mass transfer, is discussed to advance the catalyst design. Therefore, by covering a range of critical issues from fundamental material design principles to industrial‐scale performance parameters, here the future research directions in the development of highly efficient and low‐cost catalysts are presented and a procedure for screening laboratory‐designed catalysts for industrial‐scale water electrolysis is outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
带象发布了新的文献求助20
刚刚
1秒前
1秒前
阿曼尼完成签到 ,获得积分10
1秒前
英俊的铭应助LILING采纳,获得10
1秒前
iRan完成签到,获得积分10
2秒前
落忆完成签到 ,获得积分10
2秒前
蜡笔完成签到,获得积分10
2秒前
趁微风不躁完成签到,获得积分10
2秒前
通~发布了新的文献求助10
3秒前
3秒前
张磊完成签到,获得积分10
3秒前
冷艳的太君完成签到,获得积分10
4秒前
4秒前
科目三应助wwwww采纳,获得10
5秒前
5秒前
5秒前
6秒前
CH完成签到 ,获得积分10
6秒前
xiuxiu_27发布了新的文献求助10
7秒前
April发布了新的文献求助10
7秒前
打打应助核桃采纳,获得10
7秒前
7秒前
elena发布了新的文献求助10
7秒前
现代的战斗机完成签到,获得积分10
7秒前
刘星星发布了新的文献求助10
8秒前
萧秋灵完成签到,获得积分10
8秒前
8秒前
9秒前
YaoX完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
YE发布了新的文献求助10
10秒前
10秒前
11秒前
张肥肥完成签到 ,获得积分20
11秒前
明亮的斩关注了科研通微信公众号
11秒前
科研通AI5应助搞怪的人龙采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740