Detecting Academic Affective States of Learners in Online Learning Environments Using Deep Transfer Learning

无聊 计算机科学 人工智能 学习迁移 深度学习 机器学习 个性化 过程(计算) 万维网 心理学 社会心理学 操作系统
作者
Purushottama Rao Komaravalli,B. Janet
出处
期刊:Scalable Computing: Practice and Experience [Scalable Computing: Practice and Experience]
卷期号:24 (4): 957-970
标识
DOI:10.12694/scpe.v24i4.2470
摘要

Online Learning Environments (OLEs) have become essential in global education, especially during and after the COVID-19 pandemic. However, OLEs face a challenge in recognizing student emotions, hindering educators' ability to provide effective support. To address this issue, researchers emphasize the importance of a balanced dataset and a precise model for academic emotion detection in OLEs. However, the widely-used DAiSEE dataset is imbalanced and contains videos captured in well-lit environments. However, real-time observations reveal students' diverse lighting conditions and proximity to cameras. Consequently, models trained on DAiSEE dataset exhibit poor accuracy. In response, this work suggests a customized DAiSEE dataset and proposes the Xception-based transfer learned model and AffectXception model. Our customization process involves selectively extracting single-label frames with intensity levels 2 or 3 from the original DAiSEE dataset. To enhance dataset diversity and tackle the issue of dataset imbalance, we meticulously apply data augmentation techniques on these extracted frames. This results in frames that showcase variations in lighting, both low and high, as well as diverse camera perspectives. As a result, the customized DAiSEE dataset is now well-balanced and exceptionally suitable for training deep learning models to detect academic emotions in online learners. Then we trained and tested both proposed models on this dataset. The AffectXception model outperforms existing models, achieving significant improvements. For Boredom, Engagement, Confusion, and Frustration, it attains accuracy rates of 77%, 79.28%, 83.76%, and 91.87%, respectively. Additionally, we evaluate the AffectXception model on the Online Learning Spontaneous Facial Expression Database (OL-SFED), obtaining competitive results across various emotion classes. This work empowers educators to adjust their content and delivery methods based on learners' emotional states, resulting in more effective and informative online sessions. As OLEs continue to play a crucial role in education, our approach enhances their capacity to address students' emotional needs.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研靓仔发布了新的文献求助10
刚刚
微笑夜香完成签到,获得积分10
刚刚
传奇3应助yefeng采纳,获得10
1秒前
1秒前
冷酷莫言发布了新的文献求助10
2秒前
2秒前
英姑应助清新的静枫采纳,获得10
3秒前
呦吼。。。完成签到,获得积分10
4秒前
5秒前
涟漪完成签到,获得积分10
5秒前
LL发布了新的文献求助10
6秒前
CodeCraft应助liaoxl采纳,获得10
7秒前
8秒前
乐乐应助echoxq采纳,获得10
8秒前
哆哆发布了新的文献求助10
9秒前
10秒前
袁东发布了新的文献求助20
10秒前
12秒前
12秒前
科研靓仔发布了新的文献求助10
13秒前
13秒前
123456发布了新的文献求助10
15秒前
17秒前
张贵虎发布了新的文献求助10
17秒前
Karry完成签到 ,获得积分10
18秒前
echoxq完成签到,获得积分10
19秒前
20秒前
沐颜完成签到 ,获得积分10
21秒前
echoxq发布了新的文献求助10
23秒前
坦率的慕晴完成签到,获得积分10
23秒前
Heidouyan完成签到,获得积分10
23秒前
科研靓仔发布了新的文献求助10
24秒前
24秒前
26秒前
huang完成签到 ,获得积分10
26秒前
广东完成签到 ,获得积分10
26秒前
脑洞疼应助hgzz采纳,获得10
27秒前
28秒前
打打应助斯文墨镜采纳,获得10
29秒前
re发布了新的文献求助10
30秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412622
求助须知:如何正确求助?哪些是违规求助? 3015253
关于积分的说明 8869486
捐赠科研通 2703007
什么是DOI,文献DOI怎么找? 1481978
科研通“疑难数据库(出版商)”最低求助积分说明 685102
邀请新用户注册赠送积分活动 679761