立体中心
邻接
色散(光学)
不对称诱导
化学
立体化学
物理
光学
对映选择合成
有机化学
催化作用
作者
Bo Li,Hui Xu,Yanfeng Dang
标识
DOI:10.1021/acs.accounts.3c00519
摘要
ConspectusVicinal stereogenic centers are prevalent structural motifs of primary functional relevance in natural products and bioactive molecules. The quest for the rapid and controllable construction of vicinal stereogenic centers stands as a frontier endeavor in asymmetric organic synthesis. Over the past decade, stereodivergent synthesis has been intensely researched within the realm of bimetallic catalysis, aiming at establishing novel transition-metal dual-catalytic reactions that efficiently generate all stereochemical combinations of multichiral molecules from identical starting materials, thus offering new opportunities toward rapid complexity building and diversity-oriented chiral compound library generation. In this Account, we summarize our recent advancements in computational investigations of stereodivergent asymmetric allylic alkylation, an important reaction class heavily studied for the purpose of constructing vicinal stereogenic centers. Our discussions focus on synergistic bimetallic catalysis for the syntheses of α,α-disubstituted α-amino acids and cascade allylation/cyclization toward enantiomerically enriched indole-containing heterocycles. We describe our series of studies that converge in establishing the molecular mechanism of asymmetric induction for chiral copper-azomethine ylide, a nucleophile that holds widespread utility and is characterized by a distinctive, sterically biased surrounding enveloping the prochiral center. Notably, our studies revealed that attacks at the prochiral site by allylmetal species are significantly favored by dispersion attraction from one face (-PPh2) but blocked by steric repulsion and associated structural distortions on the opposite face (oxazoline), therefore building up a multimodal and highly robust face-selective stereoinduction. We showcase how a suite of systematic computational analyses generates precise atomistic insights into a number of systems of relevance. We also discuss how the same methodologies can be applied to chiral intermediates with shared interaction patterns, including the rhodium-Josiphos catalyst in asymmetric hydrogenation to create two continuous stereocenters. In the selectivity-controlling migratory insertion step, our computational models unveiled that the reaction is favored by ligand-substrate dispersion attraction on the -PPh2 side and hindered by steric repulsion on the opposite -PtBu2 side. These noncovalent interactions along with the distal ligand-auxiliary structural distortions enable strictly oriented three-dimensional stereoinduction. Our analysis of ligand-substrate dispersion interactions and steric effects in competing pathways highlights certain interaction-level similarities between PHOX-type and Josiphos-type ligands in asymmetric induction. In summary, this Account underscores the foundational significance and broad applicability of nonbonded dispersion interactions in asymmetric inductions for the construction of vicinal stereogenic centers. We envisage that the computational methodologies employed in these studies will shift toward a paradigm of interaction-based rational molecular and reaction design.
科研通智能强力驱动
Strongly Powered by AbleSci AI