清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MTGCL: Multi-Task Graph Contrastive Learning for Identifying Cancer Driver Genes from Multi-omics Data

计算机科学 图形 多任务学习 人工智能 机器学习 卷积神经网络 判别式 深度学习 鉴定(生物学) 任务(项目管理) 理论计算机科学 生物 植物 管理 经济
作者
Mingyu Xie,Shao‐Wu Zhang,Tong Zhang,Yan Li,Xiaodong Cui
标识
DOI:10.1101/2023.10.13.562159
摘要

Abstract Cancer is a complex disease that typically arises from the accumulation of mutations in driver genes. Identification of cancer driver genes is crucial for understanding the molecular mechanisms of cancer, and developing the targeted therapeutic approaches. With the development of high-throughput biological technology, a large amount of genomic data and protein interaction network data have been generated, which provides abundant data resources for identifying cancer driver genes through computational methods. Given the ability of graph neural networks to effectively integrate graph structure topology information and node features information, some graph neural network-based methods have been developed for identifying cancer driver genes. However, these methods suffer from the sparse supervised signals, and also neglect a large amount of unlabeled node information, thereby affecting their ability to identify cancer driver genes. To tackle these issues, in this work we propose a novel Multi-Task Graph Contrastive Learning framework (called MTGCL) to identify cancer driver genes. By using self-supervised graph contrastive learning to fully utilize the unlabeled node information, MTGCL designs an auxiliary task module to enhance the performance of the main task of driver gene identification. MTGCL simultaneously trains the auxiliary task and main task, and shares the graph convolutional encoder weights, so that the main task enhances the discriminative ability of the auxiliary task via supervised learning, whereas the auxiliary task exploits the unlabeled node information to refine the node representation learning of the main task. The experimental results on pan-cancer and some specific cancers demonstrate the effectiveness of MTGCL in identifying the cancer driver genes. In addition, integrating multi-omics features extracted from multiple cancer-related databases can greatly enhance the performance of identifying cancer driver genes, especially, somatic mutation features can effectively improve the performance of identifying specific cancer driver genes. The source code and data are available at https://github.com/NWPU-903PR/MTGCL . Author Summary Identifying cancer driver genes that causally contribute to cancer initiation and progression is essential for comprehending the molecular mechanisms of cancer and developing the targeted therapeutic strategies. However, wet-lab experiments are time-consuming and labor-intensive. The advent of high-throughput multi-omics technology provides an opportunity for identifying the cancer driver genes through data-driven computing approaches. Nevertheless, effectively integrating these omics data to identify cancer driver genes poses significant challenges. Existing computational methods exhibit certain limitations. For instance, conventional approaches (e.g., gene mutation frequency-based methods, network-based methods) often focus on a single omics data, while existing deep learning-based methods have not fully utilized the abundant unlabeled node information, so that their identification accuracy is not high enough. Thus, by fully utilizing multidimensional genomics data and molecular interaction networks, we propose a multi-task learning framework (called MTGCL) to identify cancer driver genes. MTGCL synergistically combines graph convolutional neural networks with graph contrastive learning. The experimental results validate the power of MTGCL for identifying cancer driver genes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖小羊完成签到 ,获得积分10
刚刚
开心每一天完成签到 ,获得积分10
2秒前
9秒前
haralee完成签到 ,获得积分10
15秒前
小林太郎应助无奈夏菡采纳,获得30
24秒前
qq完成签到 ,获得积分10
27秒前
vsvsgo完成签到,获得积分10
27秒前
30秒前
33秒前
程程发布了新的文献求助10
37秒前
木木完成签到 ,获得积分10
39秒前
缺粥完成签到 ,获得积分10
53秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
asdwind完成签到,获得积分10
59秒前
zijingsy完成签到 ,获得积分10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
xiaochuan925完成签到 ,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
1分钟前
一夜很静应助Anto采纳,获得10
2分钟前
CHEN完成签到 ,获得积分10
2分钟前
2分钟前
程翠丝完成签到,获得积分10
2分钟前
LZQ发布了新的文献求助10
2分钟前
自然的含蕾完成签到 ,获得积分10
3分钟前
颜林林完成签到,获得积分10
3分钟前
wxyinhefeng完成签到 ,获得积分10
3分钟前
大熊完成签到 ,获得积分10
3分钟前
研友_ZbP41L完成签到 ,获得积分10
3分钟前
跳跃的鹏飞完成签到 ,获得积分10
3分钟前
一彤展翅完成签到,获得积分10
3分钟前
川藏客完成签到 ,获得积分10
3分钟前
四叶草完成签到 ,获得积分10
3分钟前
LZQ完成签到,获得积分10
4分钟前
jlwang完成签到,获得积分10
4分钟前
姚芭蕉完成签到 ,获得积分0
4分钟前
雪山飞龙发布了新的文献求助10
4分钟前
vampire完成签到,获得积分10
4分钟前
aiyawy完成签到 ,获得积分10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131401
关于积分的说明 9391049
捐赠科研通 2831108
什么是DOI,文献DOI怎么找? 1556372
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890