标题 |
![]() 用于分布式人工智能模型训练的混合粒度网络负载均衡
相关领域
粒度
计算机科学
分布式计算
负载平衡(电力)
培训(气象学)
计算机体系结构
计算机网络
人工智能
操作系统
气象学
网格
物理
几何学
数学
|
网址 | |
DOI | |
其它 |
摘要:With the increasing number of parameters in artificial intelligence (AI) models, distributed AI model training using numerous servers within data centers has become commonplace. However, traditional load balancing strategies in data center networks are not suitable for distributed training. Unbalanced network load can reduce net work throughput and degrade application performance. Therefore, we propose a hybrid-granularity network load balancing strategy to address the issue, consisting of global path planing in advance, periodic flow scheduling and real-time packet rerouting. The simu lation experiment results demonstrate that our method can reduce throughput imbalance and exposed communication time. |
求助人 | |
下载 | |
温馨提示:该文献已被科研通 学术中心 收录,前往查看
科研通『学术中心』是文献索引库,收集文献的基本信息(如标题、摘要、期刊、作者、被引量等),不提供下载功能。如需下载文献全文,请通过文献求助获取。
|