已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis

医学 接收机工作特性 逻辑回归 机器学习 人工智能 预测建模 人工神经网络 梅德林 系统回顾 计算机科学 政治学 法学
作者
Thita Chiasakul,Barbara D. Lam,Megan McNichol,W. Robertson,Rachel Rosovsky,Leslie Lake,Ioannis S. Vlachos,Alys Adamski,Nimia Reyes,Karon Abe,Jeffrey I. Zwicker,Rushad Patell
出处
期刊:European Journal of Haematology [Wiley]
卷期号:111 (6): 951-962 被引量:5
标识
DOI:10.1111/ejh.14110
摘要

Abstract Background Accurate diagnostic and prognostic predictions of venous thromboembolism (VTE) are crucial for VTE management. Artificial intelligence (AI) enables autonomous identification of the most predictive patterns from large complex data. Although evidence regarding its performance in VTE prediction is emerging, a comprehensive analysis of performance is lacking. Aims To systematically review the performance of AI in the diagnosis and prediction of VTE and compare it to clinical risk assessment models (RAMs) or logistic regression models. Methods A systematic literature search was performed using PubMed, MEDLINE, EMBASE, and Web of Science from inception to April 20, 2021. Search terms included “artificial intelligence” and “venous thromboembolism.” Eligible criteria were original studies evaluating AI in the prediction of VTE in adults and reporting one of the following outcomes: sensitivity, specificity, positive predictive value, negative predictive value, or area under receiver operating curve (AUC). Risks of bias were assessed using the PROBAST tool. Unpaired t ‐test was performed to compare the mean AUC from AI versus conventional methods (RAMs or logistic regression models). Results A total of 20 studies were included. Number of participants ranged from 31 to 111 888. The AI‐based models included artificial neural network (six studies), support vector machines (four studies), Bayesian methods (one study), super learner ensemble (one study), genetic programming (one study), unspecified machine learning models (two studies), and multiple machine learning models (five studies). Twelve studies (60%) had both training and testing cohorts. Among 14 studies (70%) where AUCs were reported, the mean AUC for AI versus conventional methods were 0.79 (95% CI: 0.74–0.85) versus 0.61 (95% CI: 0.54–0.68), respectively ( p < .001). However, the good to excellent discriminative performance of AI methods is unlikely to be replicated when used in clinical practice, because most studies had high risk of bias due to missing data handling and outcome determination. Conclusion The use of AI appears to improve the accuracy of diagnostic and prognostic prediction of VTE over conventional risk models; however, there was a high risk of bias observed across studies. Future studies should focus on transparent reporting, external validation, and clinical application of these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Q哈哈哈采纳,获得10
5秒前
小鱼儿完成签到,获得积分10
6秒前
9秒前
科研通AI2S应助lqy采纳,获得10
12秒前
14秒前
嘿嘿发布了新的文献求助10
14秒前
16秒前
zcc111完成签到,获得积分10
18秒前
坦率曼寒发布了新的文献求助10
19秒前
Transition发布了新的文献求助10
20秒前
20秒前
jixuzhuixun完成签到,获得积分10
21秒前
嘿嘿完成签到,获得积分10
22秒前
24秒前
cocolu应助花酒采纳,获得30
26秒前
科研通AI2S应助花酒采纳,获得10
26秒前
huanfid完成签到 ,获得积分10
29秒前
32秒前
陈道哥完成签到 ,获得积分10
33秒前
QLLX发布了新的文献求助10
36秒前
小蘑菇应助香蕉傲松采纳,获得10
39秒前
Suzy应助jixuzhuixun采纳,获得10
41秒前
Transition完成签到,获得积分10
47秒前
云深不知处完成签到 ,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Rita应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
脑洞疼应助科研通管家采纳,获得10
50秒前
MchemG应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
坦率曼寒完成签到,获得积分10
51秒前
菜鸟队长完成签到,获得积分10
52秒前
wing00024完成签到,获得积分10
53秒前
正在获取昵称中...完成签到,获得积分10
56秒前
十攵完成签到 ,获得积分10
59秒前
十攵关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
1分钟前
哭泣的缘郡完成签到 ,获得积分10
1分钟前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3417426
求助须知:如何正确求助?哪些是违规求助? 3019051
关于积分的说明 8886433
捐赠科研通 2706542
什么是DOI,文献DOI怎么找? 1484365
科研通“疑难数据库(出版商)”最低求助积分说明 685970
邀请新用户注册赠送积分活动 681138