亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular subtypes classification of breast cancer in DCE-MRI using deep features

乳腺癌 人工智能 支持向量机 磁共振成像 计算机科学 深度学习 卷积神经网络 机器学习 癌症 医学 模式识别(心理学) 放射科 内科学
作者
Ali M. Hasan,Noor K.N. Al-Waely,Hadeel K. Aljobouri,Hamid A. Jalab,Rabha W. Ibrahim,Farid Meziane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121371-121371 被引量:14
标识
DOI:10.1016/j.eswa.2023.121371
摘要

Breast cancer is a major cause of concern on a global scale due to its high incidence rate. It is one of the leading causes of death for women, if left untreated. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used in the evaluation of breast cancer. Prior studies neglected to take into account breast cancer characteristics and features that might be helpful for distinguishing the four molecular subtypes of breast cancer. The use of breast DCE-MRI to identify the molecular subtypes is now the focus of research in breast cancer analysis. It offers breast cancer patients a better chance for an early and effective treatment plan. A manually annotated dataset of 1359 DCE-MRI images was used in this study, with 70% used for training and the remaining for testing. Twelve deep features were extracted from this dataset. The dataset was initially preprocessed through placing the ROIs by a radiologist experienced in breast MRI interpretation, then deep features are extracted using the proposed convolutional neural network (CNN). Finally, the deep features extracted are classified into molecular subtypes of breast cancer using the support vector machine (SVM). The effectiveness of the predictive model was assessed using accuracy and area under curve (AUC) measures. The test was performed on unseen held-out data. The maximum achieved accuracy and AUC were 99.78% and 100% respectively, with substantially a low complexity rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xgq关注了科研通微信公众号
2秒前
5秒前
Criminology34应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6.1应助liuliu采纳,获得30
19秒前
24秒前
11发布了新的文献求助10
30秒前
友好绿柏发布了新的文献求助10
47秒前
小马甲应助dawn采纳,获得10
1分钟前
1分钟前
dawn发布了新的文献求助10
1分钟前
善学以致用应助Fluoxtine采纳,获得10
1分钟前
黑鲨完成签到 ,获得积分10
1分钟前
Ava应助粗暴的坤采纳,获得10
1分钟前
瘦瘦的迎南完成签到 ,获得积分10
1分钟前
1分钟前
谷雨秋发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
J_Xu完成签到 ,获得积分10
2分钟前
所所应助凛玖niro采纳,获得10
2分钟前
2分钟前
凛玖niro发布了新的文献求助10
3分钟前
霖槿完成签到,获得积分10
3分钟前
3分钟前
十八完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
liuliu发布了新的文献求助30
4分钟前
4分钟前
烟花应助Li采纳,获得10
4分钟前
liuliu完成签到,获得积分20
4分钟前
4分钟前
5分钟前
ataybabdallah完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788653
求助须知:如何正确求助?哪些是违规求助? 5710088
关于积分的说明 15473780
捐赠科研通 4916652
什么是DOI,文献DOI怎么找? 2646501
邀请新用户注册赠送积分活动 1594171
关于科研通互助平台的介绍 1548587