Molecular subtypes classification of breast cancer in DCE-MRI using deep features

乳腺癌 人工智能 支持向量机 磁共振成像 计算机科学 深度学习 卷积神经网络 机器学习 癌症 医学 乳房磁振造影 模式识别(心理学) 乳腺摄影术 放射科 内科学
作者
Ali M. Hasan,Noor Kathem Nee’ma Al-Waely,Hadeel K. Aljobouri,Hamid A. Jalab,Rabha W. Ibrahim,Farid Meziane
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121371-121371 被引量:3
标识
DOI:10.1016/j.eswa.2023.121371
摘要

Breast cancer is a major cause of concern on a global scale due to its high incidence rate. It is one of the leading causes of death for women, if left untreated. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used in the evaluation of breast cancer. Prior studies neglected to take into account breast cancer characteristics and features that might be helpful for distinguishing the four molecular subtypes of breast cancer. The use of breast DCE-MRI to identify the molecular subtypes is now the focus of research in breast cancer analysis. It offers breast cancer patients a better chance for an early and effective treatment plan. A manually annotated dataset of 1359 DCE-MRI images was used in this study, with 70% used for training and the remaining for testing. Twelve deep features were extracted from this dataset. The dataset was initially preprocessed through placing the ROIs by a radiologist experienced in breast MRI interpretation, then deep features are extracted using the proposed convolutional neural network (CNN). Finally, the deep features extracted are classified into molecular subtypes of breast cancer using the support vector machine (SVM). The effectiveness of the predictive model was assessed using accuracy and area under curve (AUC) measures. The test was performed on unseen held-out data. The maximum achieved accuracy and AUC were 99.78% and 100% respectively, with substantially a low complexity rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小脆脆鲨完成签到 ,获得积分10
1秒前
1秒前
2秒前
CodeCraft应助Down采纳,获得30
2秒前
122完成签到,获得积分10
2秒前
2秒前
领导范儿应助像鱼采纳,获得10
3秒前
风中天奇发布了新的文献求助10
4秒前
6秒前
6秒前
sumire完成签到,获得积分10
6秒前
6秒前
故笺发布了新的文献求助10
7秒前
7秒前
天真的邴发布了新的文献求助10
7秒前
An.完成签到,获得积分10
8秒前
赘婿应助CCC采纳,获得10
9秒前
curtisness应助JMao采纳,获得10
9秒前
9秒前
古月小兑发布了新的文献求助10
9秒前
dingyi601完成签到,获得积分10
10秒前
12秒前
wanci应助霸气的草莓采纳,获得10
13秒前
chenyunxia发布了新的文献求助10
15秒前
15秒前
wanna完成签到,获得积分10
16秒前
时差完成签到,获得积分10
16秒前
looi发布了新的文献求助10
16秒前
鲜艳的亦玉完成签到,获得积分20
21秒前
zhuwenjian发布了新的文献求助10
22秒前
22秒前
岁月间完成签到,获得积分10
23秒前
SJHuang001完成签到,获得积分10
23秒前
24秒前
彭于晏应助儒雅的寄翠采纳,获得10
24秒前
24秒前
研友_VZG7GZ应助九千七采纳,获得10
25秒前
looi完成签到,获得积分10
25秒前
CCC发布了新的文献求助10
27秒前
IAMXC发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655