Molecular subtypes classification of breast cancer in DCE-MRI using deep features

乳腺癌 人工智能 支持向量机 磁共振成像 计算机科学 深度学习 卷积神经网络 机器学习 癌症 医学 乳房磁振造影 模式识别(心理学) 乳腺摄影术 放射科 内科学
作者
Ali M. Hasan,Noor Kathem Nee’ma Al-Waely,Hadeel K. Aljobouri,Hamid A. Jalab,Rabha W. Ibrahim,Farid Meziane
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121371-121371 被引量:3
标识
DOI:10.1016/j.eswa.2023.121371
摘要

Breast cancer is a major cause of concern on a global scale due to its high incidence rate. It is one of the leading causes of death for women, if left untreated. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used in the evaluation of breast cancer. Prior studies neglected to take into account breast cancer characteristics and features that might be helpful for distinguishing the four molecular subtypes of breast cancer. The use of breast DCE-MRI to identify the molecular subtypes is now the focus of research in breast cancer analysis. It offers breast cancer patients a better chance for an early and effective treatment plan. A manually annotated dataset of 1359 DCE-MRI images was used in this study, with 70% used for training and the remaining for testing. Twelve deep features were extracted from this dataset. The dataset was initially preprocessed through placing the ROIs by a radiologist experienced in breast MRI interpretation, then deep features are extracted using the proposed convolutional neural network (CNN). Finally, the deep features extracted are classified into molecular subtypes of breast cancer using the support vector machine (SVM). The effectiveness of the predictive model was assessed using accuracy and area under curve (AUC) measures. The test was performed on unseen held-out data. The maximum achieved accuracy and AUC were 99.78% and 100% respectively, with substantially a low complexity rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北风语完成签到,获得积分10
1秒前
harmory完成签到,获得积分20
1秒前
嘿嘿完成签到,获得积分10
1秒前
咩咩发布了新的文献求助10
2秒前
顾矜应助刘晓丹采纳,获得10
4秒前
4秒前
6秒前
今年一定离开癫胡完成签到,获得积分10
6秒前
zxx完成签到,获得积分10
6秒前
yy完成签到,获得积分10
7秒前
7秒前
Vib完成签到,获得积分10
7秒前
Chelry发布了新的文献求助10
7秒前
9秒前
9秒前
Damiao发布了新的文献求助10
10秒前
yangz10完成签到 ,获得积分10
10秒前
Liangstar完成签到 ,获得积分10
11秒前
11秒前
13秒前
Qiuyan1111发布了新的文献求助10
14秒前
ludong_0应助风从虎采纳,获得10
14秒前
14秒前
15秒前
liangha16发布了新的文献求助50
16秒前
Kail完成签到,获得积分10
17秒前
17秒前
愉快的雪珍完成签到,获得积分10
18秒前
HalfGumps完成签到,获得积分10
18秒前
19秒前
19秒前
cheney完成签到,获得积分10
19秒前
19秒前
斯文静竹发布了新的文献求助10
20秒前
20秒前
chuo0004完成签到,获得积分10
21秒前
李先生完成签到,获得积分10
22秒前
22秒前
从容的鲜花完成签到,获得积分20
23秒前
韩钰小宝发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582