已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modelling and prediction of major soil chemical properties with Random Forest: Machine learning as tool to understand soil-environment relationships in Antarctica

随机森林 环境科学 土壤科学 地质学 地球科学 计算机科学 机器学习
作者
Rafael Gomes Siqueira,Cássio Marques Moquedace dos Santos,Elpídio Inácio Fernandes Filho,Carlos Ernesto Gonçalves Reynaud Schaefer,Márcio Rocha Francelino,Iorrana Figueiredo Sacramento,Roberto Michel
出处
期刊:Catena [Elsevier]
卷期号:235: 107677-107677 被引量:15
标识
DOI:10.1016/j.catena.2023.107677
摘要

Digital Soil Mapping includes quantitative estimations of soil attributes in areas with little or no soil information, being important in remote landscapes such as the Antarctic ice-free areas. Our objective was to predict the spatial distribution of major soil chemical attributes in two important Antarctic Peninsula regions; as well as to identify the main environmental drivers of these attributes. For this, we compiled one of the largest soil databases of Antarctica and applied the machine learning algorithm Random Forest to predict seven soil chemical attributes. We also used covariates selection and partial dependence analysis to better understand the relationships of the attributes with the environmental covariates. Bases sum was the attribute which presented the highest prediction performance, whereas Na and P predictions presented the lowest. Both accuracy and uncertainty indicators showed the difficulties of Random Forest in handling natural outliers. The soil attributes distribution were related to the mean annual temperature and annual precipitation, multispectral bands and indexes related to the vegetation response, rookeries distance expressing the birds’ activity, and topographic attributes. The attributes showed a climatic gradient, with higher values of bases sum, pH, and Na in Northern Antarctic Peninsula, and higher total organic carbon, H + Al and P in Maritime Antarctic. This shows the climate covariates influence the soil variability in a macroscale, whereas terrain predictors control the soil at local scales. This study showed the Digital Soil Mapping potential to surpass the limitations of conventional mapping and indicated the feasibility in obtaining interpretable predictions which can be directly associated with the soil forming factors. Finally, the data generated can be used as reference to monitor the impacts of the climate changes on the soils of Antarctica.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjw发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
wax应助科研通管家采纳,获得10
4秒前
SciGPT应助苞大米采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小昕思完成签到 ,获得积分10
7秒前
10秒前
啵啵完成签到,获得积分10
11秒前
含蓄的行恶完成签到 ,获得积分10
12秒前
wang完成签到 ,获得积分10
13秒前
东郭南珍发布了新的文献求助10
14秒前
三三完成签到 ,获得积分10
17秒前
re发布了新的文献求助10
18秒前
19秒前
刘洋完成签到 ,获得积分10
21秒前
Uykizhao发布了新的文献求助10
23秒前
aikey完成签到,获得积分10
23秒前
李卷完成签到,获得积分10
24秒前
龘龘龘完成签到 ,获得积分10
25秒前
端庄的萝发布了新的文献求助10
26秒前
32秒前
爆米花应助橙汁采纳,获得10
32秒前
上官无心完成签到 ,获得积分10
32秒前
lilies完成签到 ,获得积分10
34秒前
37秒前
苏西完成签到,获得积分10
38秒前
韦韦完成签到,获得积分10
38秒前
40秒前
41秒前
拾年发布了新的文献求助10
41秒前
橙汁发布了新的文献求助10
45秒前
故渊完成签到,获得积分10
46秒前
welch发布了新的文献求助10
47秒前
ding应助端庄的萝采纳,获得10
47秒前
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356743
求助须知:如何正确求助?哪些是违规求助? 2980319
关于积分的说明 8693759
捐赠科研通 2661932
什么是DOI,文献DOI怎么找? 1457450
科研通“疑难数据库(出版商)”最低求助积分说明 674786
邀请新用户注册赠送积分活动 665705