Modelling and prediction of major soil chemical properties with Random Forest: Machine learning as tool to understand soil-environment relationships in Antarctica

随机森林 环境科学 土壤科学 地质学 地球科学 计算机科学 机器学习
作者
Rafael Gomes Siqueira,Cássio Marques Moquedace dos Santos,Elpídio Inácio Fernandes Filho,Carlos Ernesto Gonçalves Reynaud Schaefer,Márcio Rocha Francelino,Iorrana Figueiredo Sacramento,Roberto Michel
出处
期刊:Catena [Elsevier BV]
卷期号:235: 107677-107677 被引量:15
标识
DOI:10.1016/j.catena.2023.107677
摘要

Digital Soil Mapping includes quantitative estimations of soil attributes in areas with little or no soil information, being important in remote landscapes such as the Antarctic ice-free areas. Our objective was to predict the spatial distribution of major soil chemical attributes in two important Antarctic Peninsula regions; as well as to identify the main environmental drivers of these attributes. For this, we compiled one of the largest soil databases of Antarctica and applied the machine learning algorithm Random Forest to predict seven soil chemical attributes. We also used covariates selection and partial dependence analysis to better understand the relationships of the attributes with the environmental covariates. Bases sum was the attribute which presented the highest prediction performance, whereas Na and P predictions presented the lowest. Both accuracy and uncertainty indicators showed the difficulties of Random Forest in handling natural outliers. The soil attributes distribution were related to the mean annual temperature and annual precipitation, multispectral bands and indexes related to the vegetation response, rookeries distance expressing the birds’ activity, and topographic attributes. The attributes showed a climatic gradient, with higher values of bases sum, pH, and Na in Northern Antarctic Peninsula, and higher total organic carbon, H + Al and P in Maritime Antarctic. This shows the climate covariates influence the soil variability in a macroscale, whereas terrain predictors control the soil at local scales. This study showed the Digital Soil Mapping potential to surpass the limitations of conventional mapping and indicated the feasibility in obtaining interpretable predictions which can be directly associated with the soil forming factors. Finally, the data generated can be used as reference to monitor the impacts of the climate changes on the soils of Antarctica.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
单于思雁发布了新的文献求助10
1秒前
缓慢冰彤完成签到,获得积分10
1秒前
ccc完成签到,获得积分10
2秒前
迷人问兰发布了新的文献求助10
3秒前
Arizaq发布了新的文献求助10
3秒前
Lucas应助addd采纳,获得10
3秒前
3秒前
时尚战斗机完成签到,获得积分10
5秒前
瞬间完成签到 ,获得积分10
6秒前
cfy完成签到,获得积分10
7秒前
云飞扬应助菠萝吹雪采纳,获得10
8秒前
研友_841e4L完成签到,获得积分10
9秒前
陆睿发布了新的文献求助10
9秒前
10秒前
宁静致远完成签到,获得积分10
10秒前
13秒前
13秒前
有使不完牛劲的正主完成签到 ,获得积分10
14秒前
YL发布了新的文献求助10
15秒前
16秒前
BLDC888发布了新的文献求助30
16秒前
123发布了新的文献求助10
16秒前
16秒前
李健的粉丝团团长应助yuan采纳,获得30
16秒前
MJ发布了新的文献求助10
17秒前
scl发布了新的文献求助10
19秒前
02发布了新的文献求助10
21秒前
21秒前
AAA发布了新的文献求助10
22秒前
zxy发布了新的文献求助10
23秒前
xiao发布了新的文献求助10
24秒前
25秒前
MJ完成签到,获得积分10
26秒前
哈哈哈发布了新的文献求助10
26秒前
呆萌发布了新的文献求助10
26秒前
秉文完成签到,获得积分10
27秒前
王思凯发布了新的文献求助20
28秒前
细心冰之完成签到,获得积分10
28秒前
Luso完成签到 ,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309