Application of Supervised Descent Method for 3-D Gravity Data Focusing Inversion

反演(地质) 计算机科学 正规化(语言学) 梯度下降 计算 算法 反问题 数学优化 数学 人工智能 人工神经网络 地质学 构造盆地 数学分析 古生物学
作者
Rongzhe Zhang,Haoyuan He,Xintong Dong,Tonglin Li,Cai Liu,Xinze Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10
标识
DOI:10.1109/tgrs.2023.3312541
摘要

Three-dimensional gravity inversion is an effective method for extracting underground density distribution from gravity data. However, traditional deterministic gravity inversion methods suffer from problems such as skin effect, low computational accuracy, and poor efficiency. Therefore, we propose a three-dimensional gravity data focusing inversion algorithm based on the supervised descent method. Supervised descent method (SDM) is a non-linear optimization method based on the combination of machine learning and gradient descent method. In the offline phase, we construct a training set based on a priori information and iteratively learn a set of average descent directions between the initial model and the training model. In the online phase, we introduce a focused regularization into the prediction objective function. This addition aims to obtain a sharp boundary density model that conforms to the physical distribution. Additionally, we incorporate property boundary constraints in both the offline and online phases to control the upper and lower bounds of the density values to ensure consistency with reality. Model tests show that the proposed method can effectively overcome skin effect, improve the resolution of gravity inversion. Moreover, the construction of the training set of the proposed method is less affected by prior information, and it has strong generalization ability. Furthermore, the method does not require solving large-scale linear equations, accelerating the inversion computation speed and having strong noise resistance. Field examples demonstrate that this method has good potential for improving the accuracy and efficiency of actual gravity data inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静问芙发布了新的文献求助10
1秒前
1秒前
大个应助州府十三采纳,获得10
2秒前
5秒前
YY1023发布了新的文献求助10
5秒前
累累的完成签到 ,获得积分10
5秒前
5秒前
6秒前
ding应助luxiaoyu采纳,获得10
6秒前
6秒前
重生之我在农科院杀鱼完成签到,获得积分10
7秒前
dayoud发布了新的文献求助60
7秒前
Akim应助13sdsf采纳,获得10
8秒前
优秀的元正完成签到,获得积分10
11秒前
王璐璐发布了新的文献求助10
12秒前
张张张发布了新的文献求助10
12秒前
13秒前
勤恳的百招完成签到,获得积分10
14秒前
14秒前
坚定幻嫣发布了新的文献求助10
14秒前
霉小欧应助xiaoli采纳,获得10
16秒前
TOF发布了新的文献求助30
16秒前
乔达摩完成签到 ,获得积分10
16秒前
16秒前
李健应助研友_V8Qmr8采纳,获得10
17秒前
18秒前
18秒前
sci来发布了新的文献求助30
18秒前
机智的思山完成签到 ,获得积分10
19秒前
颂歌发布了新的文献求助10
21秒前
22秒前
22秒前
kytmm2022发布了新的文献求助10
23秒前
科研通AI2S应助孝顺的乐枫采纳,获得10
23秒前
24秒前
24秒前
25秒前
搜集达人应助甜甜的金鑫采纳,获得10
26秒前
CodeCraft应助lllkkk采纳,获得10
26秒前
yueyue完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125565
求助须知:如何正确求助?哪些是违规求助? 2775869
关于积分的说明 7728200
捐赠科研通 2431356
什么是DOI,文献DOI怎么找? 1291928
科研通“疑难数据库(出版商)”最低求助积分说明 622278
版权声明 600376