Rational drug design targeting intrinsically disordered proteins

可药性 内在无序蛋白质 计算生物学 药物发现 虚拟筛选 机制(生物学) 小分子 功能(生物学) 药物设计 结构生物信息学 药物靶点 计算机科学 生物 蛋白质结构 生物信息学 生物物理学 生物化学 物理 遗传学 量子力学 基因
作者
H. Wang,Ruoyao Xiong,Luhua Lai
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:13 (6) 被引量:11
标识
DOI:10.1002/wcms.1685
摘要

Abstract Intrinsically disordered proteins (IDPs) are proteins that perform important biological functions without well‐defined structures under physiological conditions. IDPs can form fuzzy complexes with other molecules, participate in the formation of membraneless organelles, and function as hubs in protein–protein interaction networks. The malfunction of IDPs causes major human diseases. However, drug design targeting IDPs remains challenging due to their highly dynamic structures and fuzzy interactions. Turning IDPs into druggable targets provides a great opportunity to extend the druggable target‐space for novel drug discovery. Integrative structural biology approaches that combine information derived from computational simulations, artificial intelligence/data‐driven analysis and experimental studies have been used to uncover the dynamic structures and interactions of IDPs. An increasing number of ligands that directly bind IDPs have been found either by target‐based experimental and computational screening or phenotypic screening. Along with the understanding of IDP binding with its partners, structure‐based drug design strategies, especially conformational ensemble‐based computational ligand screening and computer‐aided ligand optimization algorithms, have greatly accelerated the development of IDP ligands. It is inspiring that several IDP‐targeting small‐molecule and peptide drugs have advanced into clinical trials. However, new computational methods need to be further developed for efficiently discovering and optimizing specific and potent ligands for the vast number of IDPs. Along with the understanding of their dynamic structures and interactions, IDPs are expected to become valuable treasure of drug targets. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助ZHIXIANGWENG采纳,获得10
1秒前
orixero应助chen采纳,获得10
1秒前
赘婿应助ZHIXIANGWENG采纳,获得10
1秒前
Ava应助ZHIXIANGWENG采纳,获得10
1秒前
Mizoresuki应助ZHIXIANGWENG采纳,获得10
1秒前
在水一方应助ZHIXIANGWENG采纳,获得10
1秒前
情怀应助ZHIXIANGWENG采纳,获得10
1秒前
无花果应助ZHIXIANGWENG采纳,获得30
1秒前
烟花应助ZHIXIANGWENG采纳,获得10
1秒前
小马甲应助ZHIXIANGWENG采纳,获得10
1秒前
小马甲应助ZHIXIANGWENG采纳,获得10
1秒前
2秒前
3秒前
Zafkiel发布了新的文献求助10
3秒前
可爱的函函应助freebird采纳,获得30
3秒前
xiaosu完成签到,获得积分10
3秒前
小柏学长完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
诚心淇发布了新的文献求助10
4秒前
弯弯完成签到,获得积分10
4秒前
YY发布了新的文献求助10
5秒前
moumou完成签到,获得积分10
5秒前
5秒前
风趣霆发布了新的文献求助10
6秒前
6秒前
7秒前
Yang完成签到,获得积分10
7秒前
万能图书馆应助研新采纳,获得10
7秒前
hh完成签到 ,获得积分10
7秒前
jscr发布了新的文献求助10
7秒前
7秒前
科研通AI5应助诚心淇采纳,获得10
8秒前
8秒前
qianqian发布了新的文献求助10
8秒前
8秒前
mxxz完成签到,获得积分10
9秒前
9秒前
奶桃七七发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199