基因
生物
过氧化物酶
遗传学
基因沉默
烟草
基因家族
植物抗病性
转录组
基因组
基因表达
生物化学
酶
作者
Baihui Jiang,Chang Su,Youning Wang,Xiao Xu,Yàn Li,Dongfang Ma
标识
DOI:10.1016/j.plaphy.2023.108139
摘要
Glutathione peroxidase (GPX) is a crucial enzyme that scavenges reactive oxygen species in plants, playing a vital role in enhancing plant stress resistance. In this study, we identified 14 glutathione peroxidase genes (TaGPXs) from common hexaploid wheat (Triticum aestivum L.). These genes were subsequently categorized into three distinct groups based on their phylogenetic relationships. Simultaneously, a preliminarily analysis was conducted on the protein characteristics, chromosome localization, gene structure, cis-regulatory elements and transcriptome. Using reverse transcription quantitative PCR to analyze the expression patterns of five GPX genes that were investigated under various exogenous hormone treatments. According to the qRT-PCR analysis, it indicated that TaGPX genes have the distinct expression patterns. The enzyme activities in transiently overexpressed Nicotiana benthamiana (TaGPX3.2A and TaGPX3.4A) leaves were measured under salt and drought stresses, showed that peroxidase (POD) exhibited higher enzyme activity under stresses. Silencing TaGPX3.2A by virus-induced gene silencing (VIGS) led to reduced resistance of wheat to Fusarium graminearum, indicating that TaGPX3.2A plays a crucial role in enhancing wheat resistance against F. graminearum. This research provides a foundational basis for further investigations on the functional characterization of TaGPXs family members. And in the future it is provides valuable resources for genetic improvement of wheat resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI