A Computational Approach to Characterize the Protein S-Mer Tyrosine Kinase (PROS1-MERTK) Protein-Protein Interaction Dynamics

梅尔特克 气体6 舍宾 生物 受体酪氨酸激酶 癌症研究 化学 受体 生物化学 基因
作者
Mak B. Djulbegovic,David J. Taylor Gonzalez,Luciano Laratelli,Michael Antonietti,Vladimir N. Uversky,Carol L. Shields,Carol L. Karp
出处
期刊:Cell Biochemistry and Biophysics [Springer Nature]
被引量:1
标识
DOI:10.1007/s12013-024-01582-5
摘要

Abstract Protein S (PROS1) has recently been identified as a ligand for the TAM receptor MERTK, influencing immune response and cell survival. The PROS1–MERTK interaction plays a role in cancer progression, promoting immune evasion and metastasis in multiple cancers by fostering a tumor-supportive microenvironment. Despite its importance, limited structural insights into this interaction underscore the need for computational studies to explore their binding dynamics, potentially guiding targeted therapies. In this study, we investigated the PROS1–MERTK interaction using advanced computational analyses to support immunotherapy research. High-resolution structural models from ColabFold, an AlphaFold2 adaptation, provided a baseline structure, allowing us to examine the PROS1–MERTK interface with ChimeraX and map residue interactions through Van der Waals criteria. Molecular dynamics (MD) simulations were conducted in GROMACS over 100 ns to assess stability and conformational changes using RMSD, RMSF, and radius of gyration ( R g). The PROS1–MERTK interface was predicted to contain a heterogeneous mix of amino acid contacts, with lysine and leucine as frequent participants. MD simulations demonstrated prominent early structural shifts, stabilizing after approximately 50 ns with small conformational shifts occurring as the simulation completed. In addition, there are various regions in each protein that are predicted to have greater conformational fluctuations as compared to others, which may represent attractive areas to target to halt the progression of the interaction. These insights deepen our understanding of the PROS1–MERTK interaction role in immune modulation and tumor progression, unveiling potential targets for cancer immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vghvvjg发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
铭铭完成签到,获得积分10
2秒前
星辰大海应助风中的夕阳采纳,获得10
3秒前
3秒前
3秒前
李爱国应助结实涑采纳,获得10
4秒前
Zn应助紫紫吃菠菜采纳,获得10
5秒前
6秒前
zzzq应助vghvvjg采纳,获得10
7秒前
柯云发布了新的文献求助30
7秒前
CodeCraft应助浩二采纳,获得10
7秒前
南吕十八发布了新的文献求助10
7秒前
猫了个喵应助LQ采纳,获得10
8秒前
香蕉觅云应助LQ采纳,获得10
8秒前
醉熏的小懒虫应助ccmxigua采纳,获得50
8秒前
9秒前
hql发布了新的文献求助30
9秒前
跳跃若风发布了新的文献求助10
9秒前
白三烯完成签到,获得积分10
9秒前
9秒前
山晴发布了新的文献求助10
10秒前
guard发布了新的文献求助10
12秒前
吴1发布了新的文献求助100
12秒前
chen发布了新的文献求助10
13秒前
慕青应助包容的剑采纳,获得10
13秒前
vghvvjg完成签到,获得积分20
14秒前
Suppose发布了新的文献求助10
14秒前
小郭完成签到 ,获得积分10
15秒前
星辰大海应助中中采纳,获得10
15秒前
快乐战神没烦恼完成签到,获得积分10
17秒前
xl_c完成签到,获得积分10
17秒前
脑洞疼应助LFJ采纳,获得10
18秒前
山晴完成签到,获得积分10
18秒前
科研通AI5应助TOU采纳,获得10
19秒前
21秒前
LL完成签到,获得积分10
22秒前
香蕉觅云应助跳跃若风采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555160
求助须知:如何正确求助?哪些是违规求助? 3130863
关于积分的说明 9388950
捐赠科研通 2830329
什么是DOI,文献DOI怎么找? 1555932
邀请新用户注册赠送积分活动 726345
科研通“疑难数据库(出版商)”最低求助积分说明 715734