Impacts of climate change and land-use change on summer water vapor contribution in eastern China based on a Bayesian isotopic mixing model

气候学 环境科学 气候变化 气候模式 混合(物理) 中国 缩小尺度 贝叶斯概率 大气科学 地理 地质学 海洋学 物理 考古 量子力学 人工智能 计算机科学
作者
Jiacheng Chen,Jie Chen,XC Zhang,Peiyi Peng
出处
期刊:Journal of Climate [American Meteorological Society]
标识
DOI:10.1175/jcli-d-23-0566.1
摘要

Abstract Water vapor transport plays an important role in hydrological processes, influencing water cycles at global and regional scales. Investigating the change in water vapor sources of precipitation is helpful to understand the precipitation change and its cause. Combining the Bayesian isotopic mixing model and the Hybrid Single-Particle Lagrangian Integrated Trajectory model, this study determines the contribution change of water vapor sources for precipitation and the difference of water vapor sources under different land use and cover in eastern China. The study estimated that the mean contributions of advection, evaporation and transpiration vapor to summer precipitation during 1969-2017 are 80.3%, 5.1%, and 14.5%, respectively. Among the advection vapor, vapor from Eurasia and the Western Pacific Ocean contributes most to the precipitation in North China, and vapor from the Indian Ocean, South China Sea and Western Pacific Ocean contributes most in South China. The contribution of advection vapor to precipitation decreases at the rate of 0.7 % decade −1 , while the contributions of evaporation and transpiration vapor increase at the rate of 0.2 % decade −1 and 0.5 % decade −1 , respectively. Advection vapor contribution is the controlling factor of summer precipitation change, while local evaporation and transpiration vapor are also contributors. In addition, the contributions of evaporation and transpiration vapor to precipitation are influenced by land use and cover type. The contributions of evaporation and transpiration vapor to precipitation for large-proportion forests are higher than those for cultivated lands, while the contributions for small-proportion forests are lower than those for cultivated lands.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橙子发布了新的文献求助10
1秒前
2秒前
nini完成签到 ,获得积分10
2秒前
慕青应助SY采纳,获得10
3秒前
5秒前
SciGPT应助啊建采纳,获得10
5秒前
5秒前
今后应助WPSH采纳,获得10
7秒前
9秒前
12秒前
12秒前
丘比特应助漂亮的泥猴桃采纳,获得10
13秒前
Nuyoah完成签到,获得积分10
14秒前
SY发布了新的文献求助10
17秒前
今后应助CKK采纳,获得10
18秒前
都是发布了新的文献求助30
19秒前
1111完成签到 ,获得积分10
21秒前
21秒前
zoey发布了新的文献求助10
23秒前
图治完成签到,获得积分10
23秒前
24秒前
慕青应助坚定的黑猫采纳,获得30
24秒前
开心发布了新的文献求助10
25秒前
26秒前
由由应助星期八采纳,获得10
27秒前
ta发布了新的文献求助10
27秒前
CKK发布了新的文献求助10
27秒前
27秒前
27秒前
矮小的珠发布了新的文献求助10
28秒前
小逢逢完成签到,获得积分10
28秒前
善学以致用应助都是采纳,获得30
29秒前
vv完成签到,获得积分10
29秒前
上进生发布了新的文献求助10
30秒前
香蕉觅云应助CKK采纳,获得30
30秒前
萧水白应助小张采纳,获得10
30秒前
朴素千亦完成签到,获得积分10
31秒前
NexusExplorer应助xiaoyi采纳,获得10
31秒前
小逢逢发布了新的文献求助10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234215
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216267
捐赠科研通 2548212
什么是DOI,文献DOI怎么找? 1377613
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302