已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sheep-YOLO: a lightweight daily behavior identification and counting method for housed sheep

计算机科学 牲畜 特征(语言学) 人工智能 机器学习 模式识别(心理学) 生态学 生物 语言学 哲学
作者
Jie Wang,Yahong Zhai,Lan Zhu,Longyan Xu,Yifan Zhao,Yuan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026001-026001
标识
DOI:10.1088/1361-6501/ad9f8d
摘要

Abstract Daily behavior detection and monitoring of sheep is crucial for assessing their health status. In recent years, computer vision has been widely used in livestock behavior detection, but it usually requires large memory and computational resources. In addition, most studies have focused only on the behavior of sheep during the day, while the behavior of sheep during the night is equally important for a comprehensive understanding of their health status and well-being. Therefore, in this study, we developed a lightweight daily behavior detection and counting method for housed sheep to detect lying, feeding, and standing behaviors, and to count the number of each behavior as well as the total number of sheep. First, we propose a new PCBAM module and incorporate it into the neck part of YOLOv8n to enhance the feature information contained in the feature map, second, we use the slim neck design paradigm incorporating GSConv to lighten and improve the model operation efficiency, and finally, we reconstruct the detection head to eliminate the redundant small target detection head, reduce the model computational burden, and improve the detection performance of medium and large targets. The Sheep-YOLO model is validated using the daily behavioral dataset of housed sheep, and the experimental results show that the improved model is effective in detecting sheep behavior in complex environments, and the mAP@0.5 is improved by 5.4% compared to the baseline model, and in particular, the lying and feeding behaviors of sheep are improved by 7.2% and 8.8%, respectively. Comparative experiments with other mainstream target detection algorithms validate the advantages of our proposed model for sheep behavior detection. This study provides an effective solution for behavioral detection and counting of housed sheep.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小燕子完成签到,获得积分10
2秒前
loong发布了新的文献求助10
4秒前
hhllhh发布了新的文献求助10
4秒前
畅快芾发布了新的文献求助30
5秒前
安生完成签到,获得积分10
5秒前
周思齐完成签到 ,获得积分20
6秒前
如果发布了新的文献求助10
7秒前
CodeCraft应助loong采纳,获得10
9秒前
FashionBoy应助七爷采纳,获得10
10秒前
浮生若梦完成签到,获得积分10
12秒前
粒er完成签到 ,获得积分10
12秒前
科研通AI2S应助zhao采纳,获得10
13秒前
omgggg完成签到,获得积分10
14秒前
18秒前
丘比特应助虚影采纳,获得10
25秒前
头发茂密的我完成签到,获得积分10
25秒前
25秒前
25秒前
桀桀桀发布了新的文献求助10
29秒前
29秒前
赘婿应助Arui采纳,获得10
30秒前
33秒前
小羊发布了新的文献求助10
34秒前
斯文的萧关注了科研通微信公众号
35秒前
36秒前
37秒前
honeylaker完成签到,获得积分10
39秒前
111111111发布了新的文献求助10
39秒前
39秒前
云澈完成签到,获得积分10
41秒前
Arui发布了新的文献求助10
42秒前
44秒前
47秒前
呜呜完成签到 ,获得积分10
48秒前
chen发布了新的文献求助10
49秒前
52秒前
星辰大海应助miles采纳,获得10
54秒前
57秒前
五十完成签到 ,获得积分10
57秒前
一直向前发布了新的文献求助10
58秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989868
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255752
捐赠科研通 3270793
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882215
科研通“疑难数据库(出版商)”最低求助积分说明 809208