Sheep-YOLO: a lightweight daily behavior identification and counting method for housed sheep

计算机科学 牲畜 特征(语言学) 人工智能 机器学习 模式识别(心理学) 生态学 生物 语言学 哲学
作者
Jie Wang,Yahong Zhai,Lan Zhu,Longyan Xu,Yifan Zhao,Yuan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026001-026001
标识
DOI:10.1088/1361-6501/ad9f8d
摘要

Abstract Daily behavior detection and monitoring of sheep is crucial for assessing their health status. In recent years, computer vision has been widely used in livestock behavior detection, but it usually requires large memory and computational resources. In addition, most studies have focused only on the behavior of sheep during the day, while the behavior of sheep during the night is equally important for a comprehensive understanding of their health status and well-being. Therefore, in this study, we developed a lightweight daily behavior detection and counting method for housed sheep to detect lying, feeding, and standing behaviors, and to count the number of each behavior as well as the total number of sheep. First, we propose a new PCBAM module and incorporate it into the neck part of YOLOv8n to enhance the feature information contained in the feature map, second, we use the slim neck design paradigm incorporating GSConv to lighten and improve the model operation efficiency, and finally, we reconstruct the detection head to eliminate the redundant small target detection head, reduce the model computational burden, and improve the detection performance of medium and large targets. The Sheep-YOLO model is validated using the daily behavioral dataset of housed sheep, and the experimental results show that the improved model is effective in detecting sheep behavior in complex environments, and the mAP@0.5 is improved by 5.4% compared to the baseline model, and in particular, the lying and feeding behaviors of sheep are improved by 7.2% and 8.8%, respectively. Comparative experiments with other mainstream target detection algorithms validate the advantages of our proposed model for sheep behavior detection. This study provides an effective solution for behavioral detection and counting of housed sheep.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权思远发布了新的文献求助10
1秒前
牛文文发布了新的文献求助10
5秒前
5秒前
权思远完成签到,获得积分10
6秒前
梅子完成签到,获得积分10
7秒前
8秒前
英姑应助上好佳采纳,获得10
9秒前
温婉的香氛完成签到 ,获得积分10
10秒前
yiryir发布了新的文献求助10
10秒前
林林发布了新的文献求助10
11秒前
善学以致用应助红领巾klj采纳,获得10
11秒前
俭朴新之完成签到 ,获得积分10
12秒前
qyn1234566发布了新的文献求助20
13秒前
13秒前
封闭货车完成签到,获得积分10
14秒前
Alicyclobacillus完成签到,获得积分10
14秒前
善木兰发布了新的文献求助10
16秒前
17秒前
18秒前
21秒前
上好佳发布了新的文献求助10
21秒前
愉快西牛完成签到,获得积分10
21秒前
起风了完成签到,获得积分10
22秒前
xuzj应助qyn1234566采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
han发布了新的文献求助10
24秒前
24秒前
24秒前
封闭货车发布了新的文献求助10
25秒前
26秒前
善木兰完成签到,获得积分10
26秒前
28秒前
roy完成签到,获得积分10
33秒前
adi发布了新的文献求助10
33秒前
33秒前
快乐的青柏完成签到,获得积分10
34秒前
hanye完成签到 ,获得积分10
34秒前
大胆的夏天完成签到,获得积分10
36秒前
影子完成签到 ,获得积分10
38秒前
wonhui完成签到,获得积分20
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988997
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253520
捐赠科研通 3269928
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068