已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sheep-YOLO: a lightweight daily behavior identification and counting method for housed sheep

计算机科学 牲畜 特征(语言学) 人工智能 机器学习 模式识别(心理学) 生态学 生物 哲学 语言学
作者
Jie Wang,Yahong Zhai,Lan Zhu,Longyan Xu,Yifan Zhao,Yuan He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (2): 026001-026001
标识
DOI:10.1088/1361-6501/ad9f8d
摘要

Abstract Daily behavior detection and monitoring of sheep is crucial for assessing their health status. In recent years, computer vision has been widely used in livestock behavior detection, but it usually requires large memory and computational resources. In addition, most studies have focused only on the behavior of sheep during the day, while the behavior of sheep during the night is equally important for a comprehensive understanding of their health status and well-being. Therefore, in this study, we developed a lightweight daily behavior detection and counting method for housed sheep to detect lying, feeding, and standing behaviors, and to count the number of each behavior as well as the total number of sheep. First, we propose a new PCBAM module and incorporate it into the neck part of YOLOv8n to enhance the feature information contained in the feature map, second, we use the slim neck design paradigm incorporating GSConv to lighten and improve the model operation efficiency, and finally, we reconstruct the detection head to eliminate the redundant small target detection head, reduce the model computational burden, and improve the detection performance of medium and large targets. The Sheep-YOLO model is validated using the daily behavioral dataset of housed sheep, and the experimental results show that the improved model is effective in detecting sheep behavior in complex environments, and the mAP@0.5 is improved by 5.4% compared to the baseline model, and in particular, the lying and feeding behaviors of sheep are improved by 7.2% and 8.8%, respectively. Comparative experiments with other mainstream target detection algorithms validate the advantages of our proposed model for sheep behavior detection. This study provides an effective solution for behavioral detection and counting of housed sheep.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
泥娃娃完成签到,获得积分10
2秒前
我叫季博达完成签到,获得积分10
3秒前
北风北风完成签到 ,获得积分10
4秒前
4秒前
6秒前
实验一路绿灯完成签到 ,获得积分10
8秒前
fangyi发布了新的文献求助10
8秒前
mingming完成签到,获得积分10
11秒前
13秒前
hanlin发布了新的文献求助10
18秒前
hss完成签到 ,获得积分10
19秒前
共享精神应助Yxs采纳,获得10
22秒前
23秒前
25秒前
张尧摇摇摇完成签到 ,获得积分10
28秒前
心灵美大侠完成签到,获得积分10
28秒前
三井库里发布了新的文献求助10
29秒前
搜集达人应助zency采纳,获得10
30秒前
7U发布了新的文献求助10
31秒前
31秒前
wentao发布了新的文献求助10
31秒前
amit_弢完成签到,获得积分10
33秒前
常涑完成签到,获得积分10
34秒前
36秒前
大气的甜瓜完成签到 ,获得积分10
36秒前
Yxs发布了新的文献求助10
37秒前
赘婿应助等待秀采纳,获得30
38秒前
tmt发布了新的文献求助10
39秒前
伊笙完成签到 ,获得积分10
40秒前
隐形曼青应助南念采纳,获得10
41秒前
42秒前
含蓄灵薇完成签到 ,获得积分10
45秒前
46秒前
chenchen完成签到 ,获得积分10
48秒前
zency发布了新的文献求助10
48秒前
等待秀发布了新的文献求助30
52秒前
dingdingding完成签到,获得积分10
54秒前
55秒前
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466713
求助须知:如何正确求助?哪些是违规求助? 3059501
关于积分的说明 9066778
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508856
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896