Physics‐Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions

波形 人工神经网络 物理 计算机科学 人工智能 电信 雷达
作者
Majid Rasht‐Behesht,Christian Huber,Khemraj Shukla,George Em Karniadakis
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:127 (5) 被引量:139
标识
DOI:10.1029/2021jb023120
摘要

Abstract We propose a new approach to the solution of the wave propagation and full waveform inversions (FWIs) based on a recent advance in deep learning called physics‐informed neural networks (PINNs). In this study, we present an algorithm for PINNs applied to the acoustic wave equation and test the method with both forward models and FWI case studies. These synthetic case studies are designed to explore the ability of PINNs to handle varying degrees of structural complexity using both teleseismic plane waves and seismic point sources. PINNs' meshless formalism allows for a flexible implementation of the wave equation and different types of boundary conditions. For instance, our models demonstrate that PINN automatically satisfies absorbing boundary conditions, a serious computational challenge for common wave propagation solvers. Furthermore, a priori knowledge of the subsurface structure can be seamlessly encoded in PINNs' formulation. We find that the current state‐of‐the‐art PINNs provide good results for the forward model, even though spectral element or finite difference methods are more efficient and accurate. More importantly, our results demonstrate that PINNs yield excellent results for inversions on all cases considered and with limited computational complexity. We discuss the current limitations of the method with complex velocity models as well as strategies to overcome these challenges. Using PINNs as a geophysical inversion solver offers exciting perspectives, not only for the full waveform seismic inversions, but also when dealing with other geophysical datasets (e.g., MT, gravity) as well as joint inversions because of its robust framework and simple implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
刚刚
小唐完成签到 ,获得积分10
刚刚
眼睛大樱桃完成签到,获得积分10
1秒前
陙兂完成签到,获得积分10
2秒前
Tanchongyu发布了新的文献求助10
2秒前
Laisy完成签到,获得积分10
3秒前
lily发布了新的文献求助10
3秒前
田様应助落后的寻凝采纳,获得10
4秒前
6秒前
6秒前
消失的岛屿完成签到,获得积分20
7秒前
扁桃体发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
小二郎应助WD采纳,获得10
11秒前
鲜于之玉发布了新的文献求助10
11秒前
11秒前
斌城发布了新的文献求助10
12秒前
12秒前
英姑应助Z123采纳,获得20
13秒前
迷人雅容完成签到 ,获得积分10
13秒前
zhuys发布了新的文献求助10
14秒前
liyuanyuan发布了新的文献求助10
15秒前
任性的岱周完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
Lucas应助nini采纳,获得10
18秒前
852应助温bilibili采纳,获得20
18秒前
科研通AI5应助神宝宝采纳,获得10
18秒前
无尽夏发布了新的文献求助10
18秒前
研友_VZG7GZ应助斌城采纳,获得10
19秒前
重要芷卉完成签到 ,获得积分10
20秒前
21秒前
21秒前
21秒前
虚拟的冰淇淋完成签到,获得积分10
23秒前
柠檬完成签到 ,获得积分10
23秒前
Jasmine完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Railway applications. The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698564
求助须知:如何正确求助?哪些是违规求助? 3249494
关于积分的说明 9864176
捐赠科研通 2961133
什么是DOI,文献DOI怎么找? 1623981
邀请新用户注册赠送积分活动 768913
科研通“疑难数据库(出版商)”最低求助积分说明 741954