SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations

小RNA 二部图 疾病 计算机科学 相似性(几何) 计算生物学 人工神经网络 语义相似性 图形 人工智能 机器学习 生物 理论计算机科学 基因 遗传学 医学 病理 图像(数学)
作者
Guangzhan Zhang,Menglu Li,Huan Deng,Xinran Xu,Xuan Liu,Wen Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:24
标识
DOI:10.1093/bib/bbab464
摘要

MiRNAs are a class of small non-coding RNA molecules that play an important role in many biological processes, and determining miRNA-disease associations can benefit drug development and clinical diagnosis. Although great efforts have been made to develop miRNA-disease association prediction methods, few attention has been paid to in-depth classification of miRNA-disease associations, e.g. up/down-regulation of miRNAs in diseases. In this paper, we regard known miRNA-disease associations as a signed bipartite network, which has miRNA nodes, disease nodes and two types of edges representing up/down-regulation of miRNAs in diseases, and propose a signed graph neural network method (SGNNMD) for predicting deregulation types of miRNA-disease associations. SGNNMD extracts subgraphs around miRNA-disease pairs from the signed bipartite network and learns structural features of subgraphs via a labeling algorithm and a neural network, and then combines them with biological features (i.e. miRNA-miRNA functional similarity and disease-disease semantic similarity) to build the prediction model. In the computational experiments, SGNNMD achieves highly competitive performance when compared with several baselines, including the signed graph link prediction methods, multi-relation prediction methods and one existing deregulation type prediction method. Moreover, SGNNMD has good inductive capability and can generalize to miRNAs/diseases unseen during the training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大力发布了新的文献求助10
3秒前
在水一方应助1111采纳,获得10
3秒前
yy完成签到,获得积分10
3秒前
3秒前
666发布了新的文献求助10
4秒前
乐轩发布了新的文献求助10
5秒前
zz_1997完成签到 ,获得积分10
5秒前
李健应助wenxianxiazai123采纳,获得10
6秒前
一只猪发布了新的文献求助10
7秒前
秀丽的犀牛完成签到,获得积分10
7秒前
桃博完成签到,获得积分10
8秒前
严三笑发布了新的文献求助10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得30
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
虚幻访冬应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
孙孙应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
666发布了新的文献求助10
13秒前
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543