亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SGNNMD: signed graph neural network for predicting deregulation types of miRNA-disease associations

小RNA 二部图 疾病 计算机科学 相似性(几何) 计算生物学 人工神经网络 语义相似性 图形 人工智能 机器学习 生物 理论计算机科学 基因 遗传学 医学 图像(数学) 病理
作者
Guangzhan Zhang,Menglu Li,Huan Deng,Xinran Xu,Xuan Liu,Wen Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:18
标识
DOI:10.1093/bib/bbab464
摘要

MiRNAs are a class of small non-coding RNA molecules that play an important role in many biological processes, and determining miRNA-disease associations can benefit drug development and clinical diagnosis. Although great efforts have been made to develop miRNA-disease association prediction methods, few attention has been paid to in-depth classification of miRNA-disease associations, e.g. up/down-regulation of miRNAs in diseases. In this paper, we regard known miRNA-disease associations as a signed bipartite network, which has miRNA nodes, disease nodes and two types of edges representing up/down-regulation of miRNAs in diseases, and propose a signed graph neural network method (SGNNMD) for predicting deregulation types of miRNA-disease associations. SGNNMD extracts subgraphs around miRNA-disease pairs from the signed bipartite network and learns structural features of subgraphs via a labeling algorithm and a neural network, and then combines them with biological features (i.e. miRNA-miRNA functional similarity and disease-disease semantic similarity) to build the prediction model. In the computational experiments, SGNNMD achieves highly competitive performance when compared with several baselines, including the signed graph link prediction methods, multi-relation prediction methods and one existing deregulation type prediction method. Moreover, SGNNMD has good inductive capability and can generalize to miRNAs/diseases unseen during the training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葱饼完成签到 ,获得积分10
1分钟前
慕青应助科研通管家采纳,获得10
4分钟前
完美世界应助泓凯骏采纳,获得10
4分钟前
4分钟前
4分钟前
泓凯骏发布了新的文献求助10
4分钟前
igaku发布了新的文献求助10
4分钟前
igaku完成签到,获得积分10
4分钟前
5分钟前
吴可之发布了新的文献求助10
5分钟前
吴可之完成签到,获得积分10
5分钟前
情怀应助一杯美式采纳,获得10
5分钟前
6分钟前
一杯美式发布了新的文献求助10
6分钟前
传奇3应助科研通管家采纳,获得10
6分钟前
一杯美式完成签到,获得积分20
6分钟前
6分钟前
隐形问萍发布了新的文献求助10
6分钟前
隐形问萍完成签到,获得积分10
6分钟前
wanci应助科研通管家采纳,获得10
8分钟前
华仔应助机灵自中采纳,获得10
8分钟前
背后访风完成签到 ,获得积分10
9分钟前
LUMO完成签到 ,获得积分10
9分钟前
Tei完成签到,获得积分10
10分钟前
10分钟前
英俊的铭应助阿a采纳,获得10
10分钟前
11分钟前
阿a发布了新的文献求助10
11分钟前
moom完成签到 ,获得积分10
11分钟前
11分钟前
11分钟前
12分钟前
赘婿应助科研通管家采纳,获得30
12分钟前
马梦秋发布了新的文献求助10
12分钟前
12分钟前
12分钟前
13分钟前
充电宝应助欢呼的寻双采纳,获得10
13分钟前
CodeCraft应助泓凯骏采纳,获得10
13分钟前
13分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784146
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997