控制理论(社会学)
内部模型
服务拒绝攻击
有界函数
计算机科学
方案(数学)
停留时间
国家(计算机科学)
控制(管理)
观察员(物理)
理论(学习稳定性)
控制工程
工程类
数学
人工智能
算法
医学
临床心理学
互联网
机器学习
物理
数学分析
万维网
量子力学
作者
Chao Deng,Dan Zhang,Gang Feng
出处
期刊:Automatica
[Elsevier]
日期:2022-02-11
卷期号:139: 110172-110172
被引量:154
标识
DOI:10.1016/j.automatica.2022.110172
摘要
In this paper, the resilient practical cooperative output regulation problem (CORP) is addressed for heterogeneous linear multi-agent systems with unknown switching exosystem dynamics under denial-of-service (DoS) attacks. Different from most existing cooperative output regulation works, the exosystem dynamics considered in this paper are unknown to all agents and switching in different time intervals. A novel resilient practical cooperative output regulation control scheme is developed. This scheme consists of (i) a data-driven learning algorithm to learn the unknown switching exosystem matrices; (ii) an auxiliary observer to estimate the state of the exosystem; (iii) distributed resilient observers to estimate the state of the auxiliary system; and (iv) distributed controllers for individual agents. By using the dwell-time method, rigorous stability analysis shows that the resilient observation errors are globally ultimately bounded in the presence of DoS attacks and the resilient practical CORP is solved. Finally, a simulation example is given to illustrate the effectiveness of the proposed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI