A Multiparametric Fusion Deep Learning Model Based on DCE‐MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma

接收机工作特性 医学 核医学 磁共振成像 肝内胆管癌 卷积神经网络 人口 放射科 人工智能 计算机科学 病理 内科学 环境卫生
作者
Wenyu Gao,Wentao Wang,Danjun Song,Kang Wang,Danlan Lian,Chun Yang,Kai Zhu,Jiaping Zheng,Mengsu Zeng,Shengxiang Rao,Manning Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1029-1039 被引量:13
标识
DOI:10.1002/jmri.28126
摘要

Background Assessment of microvascular invasion (MVI) in intrahepatic cholangiocarcinoma (ICC) by using a noninvasive method is an unresolved issue. Deep learning (DL) methods based on multiparametric fusion of MR images have the potential of preoperative assessment of MVI. Purpose To investigate whether a multiparametric fusion DL model based on MR images can be used for preoperative assessment of MVI in ICC. Study type Retrospective. Population A total of 519 patients (200 females and 319 males) with a single ICC were categorized as a training ( n = 361), validation ( n = 90), and an external test cohort ( n = 68). Field strength/Sequence A 1.5 T and 3.0 T; axial T2 ‐weighted turbo spin‐echo sequence, diffusion‐weighted imaging with a single‐shot spin‐echo planar sequence, and dynamic contrast‐enhanced ( DCE ) imaging with T1 ‐weighted three‐dimensional quick spoiled gradient echo sequence. Assessment DL models of multiparametric fusion convolutional neural network (CNN) and late fusion CNN were both constructed for evaluating MVI in ICC. Gradient‐weighted class activation mapping was used for visual interpretation of MVI status in ICC. Statistical Tests The DL model performance was assessed through the receiver operating characteristic curve (ROC) analysis, and the area under the ROC curve (AUC) with the accuracy, sensitivity, and specificity were measured. P value < 0.05 was considered as statistical significance. Results In the external test cohort, the proposed multiparametric fusion DL model achieved an AUC of 0.888 with an accuracy of 86.8%, sensitivity of 85.7%, and specificity of 87.0% for evaluating MVI in ICC, and the positive predictive value and negative predictive value were 63.2% and 95.9%, respectively. The late fusion DL model achieved a lower AUC of 0.866, with an accuracy of 83.8%, sensitivity of 78.6%, specificity of 85.2% for evaluating MVI in ICC. Data Conclusion Our DL model based on multiparametric fusion of MRI achieved a good diagnostic performance in the evaluation of MVI in ICC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酶没美镁完成签到,获得积分10
刚刚
小二郎应助Rui采纳,获得10
刚刚
Libra完成签到,获得积分10
1秒前
雪儿发布了新的文献求助30
1秒前
无悔呀发布了新的文献求助10
1秒前
小巧的可仁完成签到 ,获得积分10
1秒前
1秒前
zhao完成签到,获得积分10
2秒前
masu发布了新的文献求助10
2秒前
冷酷尔琴发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
3秒前
优雅山柏完成签到,获得积分10
3秒前
XinyiZhang发布了新的文献求助10
3秒前
小蘑菇应助yangyang采纳,获得10
3秒前
慕青应助欢欢采纳,获得10
4秒前
小憩完成签到,获得积分10
4秒前
南乔发布了新的文献求助10
4秒前
张静静发布了新的文献求助10
5秒前
云儿完成签到,获得积分10
5秒前
淡淡的洋葱完成签到,获得积分10
5秒前
小洲王先生完成签到,获得积分10
6秒前
6秒前
dd完成签到,获得积分10
6秒前
6秒前
7秒前
CCL应助kk2024采纳,获得50
7秒前
wjs0406完成签到,获得积分10
7秒前
自爱悠然发布了新的文献求助10
7秒前
贺雪完成签到,获得积分10
8秒前
8秒前
玉yu发布了新的文献求助10
9秒前
深情秋刀鱼完成签到,获得积分10
9秒前
星辰大海应助冷酷尔琴采纳,获得10
9秒前
9秒前
9秒前
隐形的大有完成签到,获得积分10
10秒前
浩浩大人发布了新的文献求助10
10秒前
buno应助圈圈采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740