A Multiparametric Fusion Deep Learning Model Based on DCE‐MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma

接收机工作特性 医学 核医学 磁共振成像 肝内胆管癌 卷积神经网络 人口 放射科 人工智能 计算机科学 病理 内科学 环境卫生
作者
Wenyu Gao,Wentao Wang,Danjun Song,Kang Wang,Danlan Lian,Chun Yang,Kai Zhu,Jiaping Zheng,Mengsu Zeng,Shengxiang Rao,Manning Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1029-1039 被引量:18
标识
DOI:10.1002/jmri.28126
摘要

Background Assessment of microvascular invasion (MVI) in intrahepatic cholangiocarcinoma (ICC) by using a noninvasive method is an unresolved issue. Deep learning (DL) methods based on multiparametric fusion of MR images have the potential of preoperative assessment of MVI. Purpose To investigate whether a multiparametric fusion DL model based on MR images can be used for preoperative assessment of MVI in ICC. Study type Retrospective. Population A total of 519 patients (200 females and 319 males) with a single ICC were categorized as a training ( n = 361), validation ( n = 90), and an external test cohort ( n = 68). Field strength/Sequence A 1.5 T and 3.0 T; axial T2 ‐weighted turbo spin‐echo sequence, diffusion‐weighted imaging with a single‐shot spin‐echo planar sequence, and dynamic contrast‐enhanced ( DCE ) imaging with T1 ‐weighted three‐dimensional quick spoiled gradient echo sequence. Assessment DL models of multiparametric fusion convolutional neural network (CNN) and late fusion CNN were both constructed for evaluating MVI in ICC. Gradient‐weighted class activation mapping was used for visual interpretation of MVI status in ICC. Statistical Tests The DL model performance was assessed through the receiver operating characteristic curve (ROC) analysis, and the area under the ROC curve (AUC) with the accuracy, sensitivity, and specificity were measured. P value < 0.05 was considered as statistical significance. Results In the external test cohort, the proposed multiparametric fusion DL model achieved an AUC of 0.888 with an accuracy of 86.8%, sensitivity of 85.7%, and specificity of 87.0% for evaluating MVI in ICC, and the positive predictive value and negative predictive value were 63.2% and 95.9%, respectively. The late fusion DL model achieved a lower AUC of 0.866, with an accuracy of 83.8%, sensitivity of 78.6%, specificity of 85.2% for evaluating MVI in ICC. Data Conclusion Our DL model based on multiparametric fusion of MRI achieved a good diagnostic performance in the evaluation of MVI in ICC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Miranda完成签到,获得积分10
2秒前
2秒前
罗中翠发布了新的文献求助10
4秒前
li完成签到 ,获得积分10
4秒前
7秒前
ZZ发布了新的文献求助10
7秒前
10秒前
按时毕业的小林完成签到,获得积分20
10秒前
Bio应助皮孤晴采纳,获得30
10秒前
滴滴哒完成签到,获得积分10
11秒前
wanci应助满眼星辰采纳,获得10
11秒前
Aoka发布了新的文献求助10
11秒前
16秒前
18秒前
木子完成签到,获得积分10
19秒前
紫色奶萨完成签到,获得积分10
20秒前
圈圈完成签到 ,获得积分10
20秒前
打打应助hh采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
王嘉莹发布了新的文献求助10
22秒前
xuexi完成签到,获得积分10
23秒前
23秒前
26秒前
小麦子儿完成签到 ,获得积分10
26秒前
27秒前
李爱国应助sdjcni采纳,获得10
28秒前
28秒前
陈濠发布了新的文献求助10
29秒前
满眼星辰发布了新的文献求助10
30秒前
30秒前
31秒前
32秒前
小马甲应助冷傲曼荷采纳,获得10
32秒前
852应助和谐项链采纳,获得10
32秒前
李健应助罗中翠采纳,获得10
34秒前
小台农发布了新的文献求助10
35秒前
鳗鱼文涛发布了新的文献求助10
36秒前
文献菜鸟发布了新的文献求助10
36秒前
38秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167