A Multiparametric Fusion Deep Learning Model Based on DCE‐MRI for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma

接收机工作特性 医学 核医学 磁共振成像 肝内胆管癌 卷积神经网络 人口 放射科 人工智能 计算机科学 病理 内科学 环境卫生
作者
Wenyu Gao,Wentao Wang,Danjun Song,Kang Wang,Danlan Lian,Chun Yang,Kai Zhu,Jianbao Zheng,Mengsu Zeng,Sheng‐Xiang Rao,Manning Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (4): 1029-1039 被引量:9
标识
DOI:10.1002/jmri.28126
摘要

Background Assessment of microvascular invasion (MVI) in intrahepatic cholangiocarcinoma (ICC) by using a noninvasive method is an unresolved issue. Deep learning (DL) methods based on multiparametric fusion of MR images have the potential of preoperative assessment of MVI. Purpose To investigate whether a multiparametric fusion DL model based on MR images can be used for preoperative assessment of MVI in ICC. Study type Retrospective. Population A total of 519 patients (200 females and 319 males) with a single ICC were categorized as a training ( n = 361), validation ( n = 90), and an external test cohort ( n = 68). Field strength/Sequence A 1.5 T and 3.0 T; axial T2 ‐weighted turbo spin‐echo sequence, diffusion‐weighted imaging with a single‐shot spin‐echo planar sequence, and dynamic contrast‐enhanced ( DCE ) imaging with T1 ‐weighted three‐dimensional quick spoiled gradient echo sequence. Assessment DL models of multiparametric fusion convolutional neural network (CNN) and late fusion CNN were both constructed for evaluating MVI in ICC. Gradient‐weighted class activation mapping was used for visual interpretation of MVI status in ICC. Statistical Tests The DL model performance was assessed through the receiver operating characteristic curve (ROC) analysis, and the area under the ROC curve (AUC) with the accuracy, sensitivity, and specificity were measured. P value < 0.05 was considered as statistical significance. Results In the external test cohort, the proposed multiparametric fusion DL model achieved an AUC of 0.888 with an accuracy of 86.8%, sensitivity of 85.7%, and specificity of 87.0% for evaluating MVI in ICC, and the positive predictive value and negative predictive value were 63.2% and 95.9%, respectively. The late fusion DL model achieved a lower AUC of 0.866, with an accuracy of 83.8%, sensitivity of 78.6%, specificity of 85.2% for evaluating MVI in ICC. Data Conclusion Our DL model based on multiparametric fusion of MRI achieved a good diagnostic performance in the evaluation of MVI in ICC. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica英语好完成签到 ,获得积分10
刚刚
lanshuitai发布了新的文献求助10
1秒前
牧紫菱完成签到,获得积分10
1秒前
瞿访云完成签到,获得积分10
2秒前
33完成签到,获得积分10
2秒前
五月完成签到 ,获得积分10
4秒前
yangching应助Tonald Yang采纳,获得10
6秒前
kumo完成签到,获得积分10
6秒前
我独舞完成签到 ,获得积分10
9秒前
小楫轻舟完成签到,获得积分20
10秒前
鲸鱼完成签到 ,获得积分10
12秒前
Qintt完成签到 ,获得积分10
13秒前
雯雯完成签到,获得积分10
13秒前
Mei完成签到,获得积分10
17秒前
18秒前
小亮哈哈完成签到,获得积分0
19秒前
小楫轻舟发布了新的文献求助10
23秒前
clare完成签到 ,获得积分10
25秒前
眨眼眨眨眼完成签到,获得积分10
25秒前
王旭东完成签到 ,获得积分10
27秒前
埮埮完成签到,获得积分10
29秒前
阿争完成签到,获得积分10
29秒前
29秒前
雨醉东风完成签到,获得积分10
34秒前
酷波er应助阿争采纳,获得10
34秒前
xmhxpz发布了新的文献求助10
34秒前
那时年少完成签到,获得积分10
35秒前
平凡完成签到,获得积分10
38秒前
闫132完成签到,获得积分10
41秒前
钱兵完成签到,获得积分10
41秒前
核桃花生奶兔完成签到 ,获得积分10
43秒前
现实的曼安完成签到 ,获得积分10
47秒前
子焱完成签到 ,获得积分10
50秒前
50秒前
风趣霆完成签到,获得积分10
51秒前
坚强的元瑶完成签到,获得积分10
51秒前
Yanki完成签到,获得积分10
52秒前
SharonDu完成签到 ,获得积分10
53秒前
材1完成签到 ,获得积分10
54秒前
hhh完成签到 ,获得积分10
57秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Ultrasound-guided bilateral erector spinae plane block in the management of postoperative analgesia in living liver donors: a randomized, prospective study 400
Functional Syntax Handbook: Analyzing English at the Level of Form (作者 Robin Fawcett ) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215757
求助须知:如何正确求助?哪些是违规求助? 2864421
关于积分的说明 8142427
捐赠科研通 2530650
什么是DOI,文献DOI怎么找? 1364792
科研通“疑难数据库(出版商)”最低求助积分说明 644293
邀请新用户注册赠送积分活动 616852