Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves

人工智能 模式识别(心理学) 平滑的 偏最小二乘回归 特征提取 离散小波变换 小波 计算机科学 光谱图 数学 遥感 小波变换 计算机视觉 统计 地理
作者
Ruomei Zhao,Lulu An,Weijie Tang,Dehua Gao,Lang Qiao,Minzan Li,Hong Sun,Jinbo Qiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:195: 106802-106802 被引量:35
标识
DOI:10.1016/j.compag.2022.106802
摘要

• A CNN assisted CWT-based spectrogram strategy is proposed for chlorophyll content detection. • The first-order derivative was performed to capture detailed spectral information. • CWT was applied to obtain effective features from spectral data. • CNN model was applied to explore deep features hidden in spectral data. Visible and near-infrared spectroscopy is a nondestructive method for the chlorophyll content detection of potato crops, in which effective feature extraction is a crucial issue for detecting accuracy in the field. This study aimed to explore comprehensive features to improve the accuracy of chlorophyll content detection in potato leaves. A feature extraction method was proposed by assisting continuous wavelet transform (CWT)-based spectrogram and convolutional neural network (CNN) of the deep learning algorithm. In the experiments, the spectral data in the range of 325–1075 nm were measured in the field. A total of 314 potato leaf samples were collected, and the chlorophyll content was determined in four growth periods. The spectral features in the spatial domain and time–frequency domain were considered in data processing. First, we compared features of first-order derivative (FOD) and Savitzky–Golay smoothing (SG) in the spatial domain to select the preprocessing method. Second, in the time–frequency domain, CWT decomposes spectral data into a series of wavelet coefficient curves at various scales and wavelengths. We supposed that combining both scales and wavelengths of the wavelet coefficients could benefit the detection of the chlorophyll content in potato crops. Thus, the spectrograms were established by transforming 1D wavelet coefficient curves into 2D wavelet coefficient spectrograms. The CNN model was applied to explore potential and comprehensive features in the spectrograms. Finally, partial least squares models were established to compare the detection capability of three features including the spatial domain, wavelet coefficients by CWT, and spectrogram features by CNN. The modeling performances showed that the FOD features obtained the coefficient of determination of 0.7856 in the prediction set ( R P 2 ) and the root mean square error in the prediction set ( RMSEP ) with 3.9357; the FOD features performed better than the SG features ( R P 2 = 0.7734, RMSEP = 4.0460); The wavelet coefficients by CWT obtained R P 2 = 0.8293 and RMSEP = 3.5117. The PLS model with spectrogram features by the CNN model performed best and achieved R P 2 = 0.8749 and RMSEP = 3.0067. It preferably captured the deeper features of spectral data compared with features in the spatial domain. This research provides an effective method for leaf chlorophyll content detection in the precision management of potato crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助阿邱采纳,获得20
2秒前
孔雀翎发布了新的文献求助10
2秒前
小板凳发布了新的文献求助10
2秒前
惊执虫儿完成签到,获得积分10
4秒前
5秒前
6秒前
852应助愉快的雪珍采纳,获得10
9秒前
wq发布了新的文献求助10
10秒前
代号富婆完成签到,获得积分10
11秒前
12秒前
源缘发布了新的文献求助10
13秒前
小冯完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
14秒前
LLL完成签到,获得积分10
15秒前
15秒前
steve完成签到 ,获得积分10
15秒前
17秒前
摘星012完成签到 ,获得积分10
17秒前
无花果应助GC采纳,获得10
18秒前
温暖世立发布了新的文献求助10
19秒前
lico发布了新的文献求助20
19秒前
20秒前
阿邱发布了新的文献求助20
22秒前
MGGG关注了科研通微信公众号
22秒前
小星星668完成签到,获得积分10
22秒前
小蘑菇应助简单的南露采纳,获得10
22秒前
jia完成签到 ,获得积分10
23秒前
dungeon完成签到,获得积分10
23秒前
渝风正气完成签到,获得积分10
24秒前
back you up应助Yiyyan采纳,获得100
24秒前
温水发布了新的文献求助10
24秒前
一路生花完成签到,获得积分10
25秒前
abc1122完成签到,获得积分10
25秒前
激动的开山完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助网球采纳,获得10
25秒前
wangfan完成签到,获得积分10
26秒前
dungeon发布了新的文献求助10
26秒前
28秒前
lotus0311完成签到,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754951
求助须知:如何正确求助?哪些是违规求助? 3298295
关于积分的说明 10104270
捐赠科研通 3012875
什么是DOI,文献DOI怎么找? 1654805
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753214