Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves

人工智能 模式识别(心理学) 平滑的 偏最小二乘回归 特征提取 离散小波变换 小波 计算机科学 光谱图 数学 遥感 小波变换 计算机视觉 统计 地理
作者
Ruomei Zhao,Lulu An,Weijie Tang,Dehua Gao,Lang Qiao,Minzan Li,Hong Sun,Jinbo Qiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:195: 106802-106802 被引量:35
标识
DOI:10.1016/j.compag.2022.106802
摘要

• A CNN assisted CWT-based spectrogram strategy is proposed for chlorophyll content detection. • The first-order derivative was performed to capture detailed spectral information. • CWT was applied to obtain effective features from spectral data. • CNN model was applied to explore deep features hidden in spectral data. Visible and near-infrared spectroscopy is a nondestructive method for the chlorophyll content detection of potato crops, in which effective feature extraction is a crucial issue for detecting accuracy in the field. This study aimed to explore comprehensive features to improve the accuracy of chlorophyll content detection in potato leaves. A feature extraction method was proposed by assisting continuous wavelet transform (CWT)-based spectrogram and convolutional neural network (CNN) of the deep learning algorithm. In the experiments, the spectral data in the range of 325–1075 nm were measured in the field. A total of 314 potato leaf samples were collected, and the chlorophyll content was determined in four growth periods. The spectral features in the spatial domain and time–frequency domain were considered in data processing. First, we compared features of first-order derivative (FOD) and Savitzky–Golay smoothing (SG) in the spatial domain to select the preprocessing method. Second, in the time–frequency domain, CWT decomposes spectral data into a series of wavelet coefficient curves at various scales and wavelengths. We supposed that combining both scales and wavelengths of the wavelet coefficients could benefit the detection of the chlorophyll content in potato crops. Thus, the spectrograms were established by transforming 1D wavelet coefficient curves into 2D wavelet coefficient spectrograms. The CNN model was applied to explore potential and comprehensive features in the spectrograms. Finally, partial least squares models were established to compare the detection capability of three features including the spatial domain, wavelet coefficients by CWT, and spectrogram features by CNN. The modeling performances showed that the FOD features obtained the coefficient of determination of 0.7856 in the prediction set ( R P 2 ) and the root mean square error in the prediction set ( RMSEP ) with 3.9357; the FOD features performed better than the SG features ( R P 2 = 0.7734, RMSEP = 4.0460); The wavelet coefficients by CWT obtained R P 2 = 0.8293 and RMSEP = 3.5117. The PLS model with spectrogram features by the CNN model performed best and achieved R P 2 = 0.8749 and RMSEP = 3.0067. It preferably captured the deeper features of spectral data compared with features in the spatial domain. This research provides an effective method for leaf chlorophyll content detection in the precision management of potato crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
刚刚
1秒前
笑点低的雪冥完成签到,获得积分10
2秒前
jia完成签到 ,获得积分10
3秒前
大个应助鲤鱼小土豆采纳,获得10
3秒前
liourg发布了新的文献求助10
3秒前
AJ完成签到 ,获得积分10
3秒前
淡淡从安完成签到 ,获得积分10
4秒前
小马哥完成签到,获得积分10
4秒前
herogyus发布了新的文献求助10
4秒前
彭于晏应助俏皮行云采纳,获得10
7秒前
lll发布了新的文献求助10
7秒前
12秒前
zzy完成签到 ,获得积分10
14秒前
herogyus完成签到,获得积分10
15秒前
Csy发布了新的文献求助10
15秒前
15秒前
www完成签到,获得积分10
15秒前
16秒前
1_a发布了新的文献求助10
16秒前
英俊小鼠发布了新的文献求助10
20秒前
20秒前
liourg完成签到 ,获得积分10
21秒前
zjq完成签到,获得积分10
21秒前
21秒前
鲤鱼小土豆完成签到,获得积分10
24秒前
24秒前
小张发布了新的文献求助10
24秒前
毕业论文三万字完成签到,获得积分10
25秒前
深情安青应助1_a采纳,获得10
25秒前
25秒前
艾欧比完成签到 ,获得积分10
26秒前
烫烫烫发布了新的文献求助20
26秒前
彭于晏应助等待凝海采纳,获得10
27秒前
感动依霜完成签到 ,获得积分10
28秒前
萤火虫完成签到 ,获得积分10
28秒前
李健应助小张采纳,获得10
29秒前
Hello应助平淡南霜采纳,获得10
35秒前
HYZ完成签到,获得积分10
36秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464463
求助须知:如何正确求助?哪些是违规求助? 3057839
关于积分的说明 9058737
捐赠科研通 2747955
什么是DOI,文献DOI怎么找? 1507640
科研通“疑难数据库(出版商)”最低求助积分说明 696627
邀请新用户注册赠送积分活动 696248