Engineering of g-C3N4-based composites for photocatalytic and electrocatalytic water splitting: Recent progress, challenges and perspective

分解水 光催化 电催化剂 光催化分解水 催化作用 纳米技术 化学 复合材料 材料科学 电化学 物理化学 有机化学 电极
作者
Xin‐Lian Song,Lei Chen,Jin‐Tao Ren,Li‐Jiao Gao,Zhong−Yong Yuan
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:507: 215752-215752 被引量:1
标识
DOI:10.1016/j.ccr.2024.215752
摘要

Photocatalytic and electrocatalytic water splitting are considered as fabulous approaches to produce hydrogen energy for promoting global energy transition. The g-C3N4 exhibits great potential for both photocatalysis and electrocatalysis owing to the unique physiochemical properties like its suitable bandgap, tunable energy band position, outstanding structure stability, high nitrogen concentration, diverse morphologies, etc. But pure g-C3N4 can only attain limited catalytic performance since it cannot satisfy the diversified requirements of the complex reactions, making it essential to develop and construct efficient g-C3N4 based composites. In this review, diversified synthetic strategies of g-C3N4 based composites are listed systematically and the characteristics of each strategy are discussed in detail. The design principles of g-C3N4 based composites towards photocatalytic water splitting are elaborately summarized from the perspective of both half reactions and overall water splitting, which also deeply probe the relationship between structures and performances. And the development of g-C3N4 based composites for electrocatalytic water splitting is comprehensively concluded with g-C3N4 serving as active component and sacrificial precursor. The current challenges and opportunities of g-C3N4 composites for photocatalytic/electrocatalytic water splitting are presented as well. This review will throw light on preparing outstanding g-C3N4 based composites for realizing competent water splitting and other energy-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ethan完成签到,获得积分10
2秒前
3秒前
大方太清完成签到 ,获得积分10
4秒前
4秒前
5秒前
7秒前
冯杰发布了新的文献求助10
7秒前
昌莆完成签到,获得积分10
8秒前
8秒前
potassalt完成签到 ,获得积分10
8秒前
Owen应助内向的大白采纳,获得10
9秒前
10秒前
10秒前
10秒前
完美世界应助wsqg123采纳,获得10
11秒前
子小孙发布了新的文献求助10
12秒前
威武以菱关注了科研通微信公众号
13秒前
尤瑟夫发布了新的文献求助10
14秒前
皮不起来的国国完成签到,获得积分10
14秒前
打打应助冯杰采纳,获得10
14秒前
CipherSage应助失眠剑采纳,获得10
16秒前
16秒前
16秒前
小毛驴发布了新的文献求助10
17秒前
白白白完成签到 ,获得积分10
17秒前
科研12345完成签到,获得积分20
18秒前
豆豆应助芮rich采纳,获得10
19秒前
丘比特应助dolphin采纳,获得10
19秒前
20秒前
甜味拾荒者完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
23秒前
han完成签到 ,获得积分10
23秒前
23秒前
wangzheng发布了新的文献求助10
26秒前
26秒前
liu关闭了liu文献求助
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136060
求助须知:如何正确求助?哪些是违规求助? 2786881
关于积分的说明 7779829
捐赠科研通 2443052
什么是DOI,文献DOI怎么找? 1298859
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870