Quantifying uncertainty: Air quality forecasting based on dynamic spatial-temporal denoising diffusion Probabilistic model

计算机科学 概率逻辑 背景(考古学) 空气质量指数 人工智能 机器学习 数据挖掘 气象学 地理 考古
作者
Xiaowen Chu,G.Q. Li,H. Li,Yue Wang,Wenzhe Wang,Qingyi Liu,Hongcheng Wang
出处
期刊:Environmental Research [Elsevier]
卷期号:: 118438-118438
标识
DOI:10.1016/j.envres.2024.118438
摘要

Air pollution constitutes a substantial peril to human health, thereby catalyzing the evolution of an array of air quality prediction models. These models span from mechanistic and statistical strategies to machine learning methodologies. The burgeoning field of deep learning has given rise to a plethora of advanced models, which have demonstrated commendable performance. However, previous investigations have overlooked the salience of quantifying prediction uncertainties and potential future interconnections among air monitoring stations. Moreover, prior research typically utilized static predetermined spatial relationships, neglecting dynamic dependencies. To address these limitations, we propose a model named Dynamic Spatial-Temporal Denoising Diffusion Probabilistic Model (DST-DDPM) for air quality prediction. Our model is underpinned by the renowned denoising diffusion model, aiding us in discerning indeterminacy. In order to encapsulate dynamic patterns, we design a dynamic context encoder to generate dynamic adjacency matrices, whilst maintaining static spatial information. Furthermore, we incorporate a spatial-temporal denoising model to concurrently learn both spatial and temporal dependencies. Authenticating our model's performance using a real-world dataset collected in Beijing, the outcomes indicate that our model eclipses other baseline models in terms of both short-term and long-term predictions by 1.36% and 11.62% respectively. Finally, we conduct a case study to exhibit our model's capacity to quantify uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助xxxxxxx采纳,获得20
刚刚
刚刚
1秒前
刻苦惜萍发布了新的文献求助10
1秒前
所所应助Cassie采纳,获得10
3秒前
4秒前
pluto应助TJY采纳,获得30
4秒前
乐乐应助球球采纳,获得10
5秒前
醉波发布了新的文献求助10
6秒前
小鱼爱吃肉应助jeronimo采纳,获得30
7秒前
9秒前
hill完成签到,获得积分10
10秒前
13秒前
14秒前
醉波完成签到,获得积分10
14秒前
科研通AI2S应助草菇采纳,获得10
15秒前
勤劳的芳举报聆听求助涉嫌违规
15秒前
15秒前
17秒前
Orange应助susu采纳,获得10
17秒前
SPRETEND发布了新的文献求助10
18秒前
miao完成签到,获得积分10
18秒前
执着月饼发布了新的文献求助20
20秒前
roundtree发布了新的文献求助10
21秒前
狐狐发布了新的文献求助10
21秒前
21秒前
22秒前
Linda完成签到,获得积分10
23秒前
24秒前
研友_nV2ROn完成签到,获得积分10
24秒前
Zoe完成签到 ,获得积分10
25秒前
chen发布了新的文献求助20
27秒前
27秒前
Lucas应助科研通管家采纳,获得10
28秒前
所所应助科研通管家采纳,获得10
28秒前
Hello应助科研通管家采纳,获得10
29秒前
wqqwd应助科研通管家采纳,获得20
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301872
求助须知:如何正确求助?哪些是违规求助? 2936417
关于积分的说明 8477666
捐赠科研通 2610201
什么是DOI,文献DOI怎么找? 1425027
科研通“疑难数据库(出版商)”最低求助积分说明 662250
邀请新用户注册赠送积分活动 646421