Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery

张量(固有定义) 计算机科学 增采样 修补 秩(图论) 人工智能 代表(政治) 外部数据表示 点云 算法 数学 图像(数学) 组合数学 政治 政治学 纯数学 法学
作者
Yisi Luo,Xi-Le Zhao,Zhemin Li,Michael K. Ng,Deyu Meng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (5): 3351-3369 被引量:14
标识
DOI:10.1109/tpami.2023.3341688
摘要

Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can solely represent multi-dimensional discrete data on meshgrid, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR) parameterized by multilayer perceptrons (MLPs), which can continuously represent data beyond meshgrid with powerful representation abilities. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization, and utilize MLPs to paramterize factor functions of the tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fpxxx发布了新的文献求助10
刚刚
复成发布了新的文献求助10
1秒前
2秒前
2秒前
司马秋凌发布了新的文献求助10
2秒前
2秒前
2秒前
Ting发布了新的文献求助10
2秒前
诚c发布了新的文献求助10
3秒前
DamenS发布了新的文献求助10
4秒前
打打应助李西瓜采纳,获得10
4秒前
帅气的老五完成签到,获得积分10
5秒前
香菜头发布了新的文献求助10
5秒前
香菜头发布了新的文献求助30
5秒前
香菜头发布了新的文献求助10
6秒前
香菜头发布了新的文献求助10
6秒前
xiao发布了新的文献求助10
6秒前
李健的粉丝团团长应助xxx采纳,获得10
6秒前
ynchendt完成签到,获得积分10
6秒前
duke完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
萝卜卜完成签到,获得积分10
10秒前
66完成签到,获得积分10
12秒前
12秒前
Owen应助学术小天才采纳,获得10
12秒前
雪山飞龙发布了新的文献求助10
12秒前
fpxxx完成签到,获得积分10
13秒前
13秒前
14秒前
简单的千凝完成签到,获得积分10
15秒前
Gray发布了新的文献求助10
15秒前
天天快乐应助文艺鞋子采纳,获得10
16秒前
woaihaohao发布了新的文献求助10
16秒前
muyu发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621033
求助须知:如何正确求助?哪些是违规求助? 4705750
关于积分的说明 14933493
捐赠科研通 4764401
什么是DOI,文献DOI怎么找? 2551437
邀请新用户注册赠送积分活动 1513993
关于科研通互助平台的介绍 1474742