Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery

张量(固有定义) 计算机科学 增采样 修补 秩(图论) 人工智能 代表(政治) 外部数据表示 点云 算法 数学 图像(数学) 组合数学 政治 政治学 纯数学 法学
作者
Yisi Luo,Xi-Le Zhao,Zhemin Li,Michael K. Ng,Deyu Meng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:10
标识
DOI:10.1109/tpami.2023.3341688
摘要

Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can solely represent multi-dimensional discrete data on meshgrid, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR) parameterized by multilayer perceptrons (MLPs), which can continuously represent data beyond meshgrid with powerful representation abilities. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization, and utilize MLPs to paramterize factor functions of the tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈梦雨发布了新的文献求助10
刚刚
复杂瑛完成签到,获得积分10
刚刚
刚刚
1秒前
眼睛大世开完成签到 ,获得积分10
1秒前
赤邪发布了新的文献求助10
2秒前
安凉完成签到,获得积分10
2秒前
yangyong完成签到,获得积分10
2秒前
zkkz完成签到,获得积分10
2秒前
打打应助橘子采纳,获得40
2秒前
Jasper应助云澈采纳,获得10
2秒前
隐形曼青应助7777777采纳,获得10
2秒前
科研通AI5应助SCI采纳,获得10
3秒前
芋头不秃头完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
kushdw完成签到,获得积分10
5秒前
傲娇小废柴完成签到,获得积分20
6秒前
TranYan发布了新的文献求助10
6秒前
Sally发布了新的文献求助10
6秒前
sun应助怡然的飞珍采纳,获得20
7秒前
7秒前
8秒前
8秒前
孔雨珍完成签到,获得积分10
9秒前
娇气的春天完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
大模型应助奔奔采纳,获得10
11秒前
12秒前
12秒前
Owen应助西哈哈采纳,获得10
12秒前
Jessie完成签到 ,获得积分10
12秒前
烟花应助孔雨珍采纳,获得10
13秒前
王小志发布了新的文献求助10
13秒前
科研通AI5应助SCI采纳,获得10
13秒前
net完成签到 ,获得积分10
13秒前
Sally完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794