Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery

张量(固有定义) 计算机科学 增采样 修补 秩(图论) 人工智能 代表(政治) 外部数据表示 点云 算法 数学 图像(数学) 组合数学 政治 政治学 纯数学 法学
作者
Yisi Luo,Xi-Le Zhao,Zhemin Li,Michael K. Ng,Deyu Meng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (5): 3351-3369 被引量:14
标识
DOI:10.1109/tpami.2023.3341688
摘要

Since higher-order tensors are naturally suitable for representing multi-dimensional data in real-world, e.g., color images and videos, low-rank tensor representation has become one of the emerging areas in machine learning and computer vision. However, classical low-rank tensor representations can solely represent multi-dimensional discrete data on meshgrid, which hinders their potential applicability in many scenarios beyond meshgrid. To break this barrier, we propose a low-rank tensor function representation (LRTFR) parameterized by multilayer perceptrons (MLPs), which can continuously represent data beyond meshgrid with powerful representation abilities. Specifically, the suggested tensor function, which maps an arbitrary coordinate to the corresponding value, can continuously represent data in an infinite real space. Parallel to discrete tensors, we develop two fundamental concepts for tensor functions, i.e., the tensor function rank and low-rank tensor function factorization, and utilize MLPs to paramterize factor functions of the tensor function factorization. We theoretically justify that both low-rank and smooth regularizations are harmoniously unified in LRTFR, which leads to high effectiveness and efficiency for data continuous representation. Extensive multi-dimensional data recovery applications arising from image processing (image inpainting and denoising), machine learning (hyperparameter optimization), and computer graphics (point cloud upsampling) substantiate the superiority and versatility of our method as compared with state-of-the-art methods. Especially, the experiments beyond the original meshgrid resolution (hyperparameter optimization) or even beyond meshgrid (point cloud upsampling) validate the favorable performances of our method for continuous representation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Lancet发布了新的文献求助20
3秒前
森禾完成签到 ,获得积分10
6秒前
6秒前
上官若男应助曾经的帅哥采纳,获得10
9秒前
陈星翰完成签到,获得积分10
9秒前
stumm发布了新的文献求助10
11秒前
Chief完成签到,获得积分0
12秒前
12秒前
13秒前
奋斗成风发布了新的文献求助10
15秒前
浮游应助Kevin采纳,获得10
21秒前
浮游应助扬灵兮采纳,获得10
22秒前
安详的冷安完成签到,获得积分10
23秒前
烟花应助keke采纳,获得10
24秒前
还行吧完成签到 ,获得积分10
25秒前
俏皮的安萱完成签到 ,获得积分10
26秒前
材袅完成签到,获得积分10
27秒前
30秒前
盐焗鱼丸完成签到 ,获得积分10
31秒前
32秒前
32秒前
32秒前
33秒前
keke完成签到,获得积分10
35秒前
TNU发布了新的文献求助10
35秒前
36秒前
Bob发布了新的文献求助10
36秒前
39秒前
hilbet发布了新的文献求助10
41秒前
李琦完成签到 ,获得积分10
42秒前
auggy发布了新的文献求助10
42秒前
Bob完成签到,获得积分10
42秒前
44秒前
淡然葶完成签到 ,获得积分10
45秒前
46秒前
笨笨念文完成签到 ,获得积分10
49秒前
51秒前
58秒前
Cik完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557614
求助须知:如何正确求助?哪些是违规求助? 4642696
关于积分的说明 14668844
捐赠科研通 4584126
什么是DOI,文献DOI怎么找? 2514615
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523