Structural stability and release properties of emulsion-alginate beads under gastrointestinal conditions

肿胀 的 化学 乳状液 自愈水凝胶 化学工程 海藻酸钙 色谱法 生物化学 有机化学 高分子化学 工程类
作者
Lingfeng Wu,Karin Schroën,Meinou N. Corstens
出处
期刊:Food Hydrocolloids [Elsevier BV]
卷期号:150: 109702-109702 被引量:10
标识
DOI:10.1016/j.foodhyd.2023.109702
摘要

Ca-alginate beads are promising vehicles for targeted release, amongst others for oil. The release pattern is largely determined by the structural stability of such hydrogels (i.e., shrinking, swelling, or even disintegration), albeit that these processes are poorly understood. We designed a range of alginate hydrogel beads with different alginates (M/G ratio 1.2 or 2.1) and oil content (20–54%), and monitored their behaviour under simulated gastrointestinal conditions (INFOGEST protocol). Low M/G ratio emulsion-alginate gels were mechanically stronger than their counterparts prepared with high M/G ratio alginate. Beads prepared with high M/G ratio alginate swelled and disintegrated under gastric and intestinal conditions, with a high oil load contributing to reduced structural stability. This could be mitigated by using a higher Ca2+ concentration (10 mM), confirming that calcium plays a key role in structural stability. The actual release of fatty acids was co-determined by the properties of the hydrogel and their disintegration, which was further enhanced by extended oil digestion. Depending on the release pattern required to achieve a target, both mechanisms can be considered. For release in the more distal gastrointestinal (GI) tract, the structure needs to be maintained for longer, which is possible through the use of low M/G ratio alginate in combination with higher Ca2+ concentration (10 mM). These insights contribute to the development of alginate-based vehicles that can deliver their payload target to the small intestine or colon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
任性的元冬完成签到,获得积分10
1秒前
1秒前
Ava应助huiya采纳,获得10
3秒前
科研通AI2S应助瘦瘦夜蓉采纳,获得10
3秒前
搞怪藏今完成签到,获得积分10
4秒前
激动的萧发布了新的文献求助10
6秒前
酷波er应助呆萌藏鸟采纳,获得10
6秒前
帅气的亦绿完成签到,获得积分10
7秒前
多宝鱼儿完成签到 ,获得积分20
7秒前
典雅长颈鹿完成签到,获得积分10
7秒前
8秒前
俊逸尔风完成签到 ,获得积分10
8秒前
9秒前
完美世界应助misaka采纳,获得10
10秒前
10秒前
飘逸果汁完成签到,获得积分10
11秒前
Albert完成签到,获得积分10
13秒前
浅斟低唱发布了新的文献求助10
14秒前
Klerry发布了新的文献求助10
15秒前
完美青旋完成签到,获得积分10
18秒前
19秒前
19秒前
科研通AI5应助嘻嘻采纳,获得10
19秒前
lin完成签到 ,获得积分10
21秒前
22秒前
23秒前
嘻嘻完成签到,获得积分10
23秒前
两岸关注了科研通微信公众号
24秒前
24秒前
24秒前
24秒前
慕青应助秋子采纳,获得10
27秒前
白鸽鸽发布了新的文献求助10
29秒前
30秒前
DKN发布了新的文献求助10
30秒前
davidbry发布了新的文献求助10
31秒前
聪明凉面完成签到,获得积分10
32秒前
劲秉应助浅斟低唱采纳,获得10
34秒前
CodeCraft应助DKN采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673357
求助须知:如何正确求助?哪些是违规求助? 3229110
关于积分的说明 9783984
捐赠科研通 2939630
什么是DOI,文献DOI怎么找? 1611183
邀请新用户注册赠送积分活动 760809
科研通“疑难数据库(出版商)”最低求助积分说明 736290