化学
肺表面活性物质
微塑料
过氧化氢
激进的
吸入染毒
生物物理学
活性氧
磷脂
脂质过氧化
超氧化物
吸附
氧化应激
吸入
超氧化物歧化酶
呼吸系统
环境化学
生物化学
毒性
有机化学
医学
生物
内科学
解剖
酶
膜
作者
Yan Cao,Qun Zhao,Fanshu Jiang,Yingxue Geng,Haoran Song,Linfeng Zhang,Chen Li,Jie Li,Yingjie Li,Xuewei Hu,Jianhong Huang,Senlin Tian
标识
DOI:10.1016/j.envres.2023.117803
摘要
The relationship between microplastics (MPs) and human respiratory health has garnered significant attention since inhalation constitutes the primary pathway for atmospheric MP exposure. While recent studies have revealed respiratory risks associated with MPs, virgin MPs used as plastic surrogates in these experiments did not represent the MPs that occur naturally and that undergo aging effects. Thus, the effects of aged MPs on respiratory health remain unknown. We herein analyzed the interaction between inhalable aged MPs with lung surfactant (LS) extracted from porcine lungs vis-à-vis interfacial chemistry employing in-vitro experiments, and explored oxidative damage induced by aged MPs in simulated lung fluid (SLF) and the underlying mechanisms of action. Our results showed that aged MPs significantly increased the surface tension of the LS, accompanied by a diminution in its foaming ability. The stronger adsorptive capacity of the aged MPs toward the phospholipids of LS appeared to produce increased surface tension, while the change in foaming ability might have resulted from a variation in the protein secondary structure and the adsorption of proteins onto MPs. The adsorption of phospholipid and protein components then led to the aggregation of MPs in SLF, where the aged MPs exhibited smaller hydrodynamic diameters in comparison with the unaged MPs, likely interacting with biomolecules in bodily fluids to exacerbate health hazards. Persistent free radicals were also formed on aged MPs, inducing the formation of reactive oxygen species such as superoxide radicals (O
科研通智能强力驱动
Strongly Powered by AbleSci AI