Three-Tier Hierarchical Porous Structure with Ultrafast Capillary Transport for Flexible Electronics Cooling

材料科学 多孔性 数码产品 毛细管作用 超短脉冲 纳米技术 光电子学 复合材料 电气工程 光学 工程类 物理 激光器
作者
Peilin Cui,Yunxie Huang,Runkeng Liu,Dinghua Hu,Huiying Wu,Zhenyu Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c16929
摘要

The development of flexible electronics needs efficient cooling devices. The porous wick, the key component in a heat pipe (HP) and vapor chamber (VC), is generally fabricated by sintering copper particles at high temperatures (>1000 °C), which makes it only formed on an inflexible substrate. In this work, one three-tier hierarchical porous structure (mesocrack, micropore, and nanopapillae) was fabricated via a low-temperature sintering method based on the utilization of self-reducing metal precursors (∼300 °C), which can be used as a flexible porous wick. The mesocrack, acting as the main water flow channel, efficiently decreases the flow resistance. The micropore, covered with densely distributed spore-like nanopapillae, creates a heterogeneous wetting surface. By harnessing the synergistic effect of hydrophobic drag reduction and hydrophilic driving force enhancement, the capillary performance is significantly improved. The obtained wick on the flexible substrate can overcome the dilemma between diminishing viscous resistance and strengthening capillary force at different length scales. It can achieve an ultimate wicking coefficient of 7.132 mm/s0.5, representing an enhancement of 9.1% compared to the best micro/nano wick structure in the previous works. Moreover, for the flexible light-emitting diode, the passive cooling approach utilizing the fluid transport and evaporation within the porous structure fabricated in this study, in comparison to the natural cooling, achieved a temperature decrease of 35.9 °C, resulting in a cooling effect of up to 35.1%. The proposed method resolves the challenge of fabricating a porous wick for flexible HP and VC, and it will open up a way for the cooling technique of flexible electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WenfengFan发布了新的文献求助10
刚刚
jyp111应助小童老婆采纳,获得10
刚刚
打打应助三木采纳,获得10
1秒前
dropcity发布了新的文献求助10
1秒前
CTX给CTX的求助进行了留言
2秒前
尘尘完成签到,获得积分10
2秒前
2秒前
不安青牛应助山山而川采纳,获得10
2秒前
An驳回了新雨应助
3秒前
汤飞柏发布了新的文献求助10
3秒前
3秒前
3秒前
qwe1108发布了新的文献求助10
4秒前
yiyayy应助renin采纳,获得10
4秒前
ee关闭了ee文献求助
4秒前
小一完成签到,获得积分10
4秒前
5秒前
上官若男应助水瓶子采纳,获得10
5秒前
6秒前
6秒前
你好完成签到,获得积分10
7秒前
玉玉发布了新的文献求助10
7秒前
WUHUDASM应助龙龙冲采纳,获得10
7秒前
8秒前
cebr完成签到,获得积分10
9秒前
YING完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
哈哈完成签到,获得积分10
9秒前
QQQQQQQW完成签到,获得积分10
9秒前
10秒前
001完成签到,获得积分20
10秒前
走啊发布了新的文献求助10
11秒前
yukinoxxn发布了新的文献求助10
11秒前
贪玩菲鹰发布了新的文献求助10
11秒前
如意元霜发布了新的文献求助10
11秒前
蜡笔小鑫完成签到,获得积分10
11秒前
科研通AI2S应助日川冈坂采纳,获得10
11秒前
yinxq22发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468585
求助须知:如何正确求助?哪些是违规求助? 3061641
关于积分的说明 9076789
捐赠科研通 2752112
什么是DOI,文献DOI怎么找? 1510303
科研通“疑难数据库(出版商)”最低求助积分说明 697693
邀请新用户注册赠送积分活动 697688