平均场理论
指数函数
分数布朗运动
布朗运动
均方
几何布朗运动
数学
平方(代数)
指数衰减
物理
统计物理学
数学分析
经典力学
扩散过程
统计
量子力学
几何学
计算机科学
知识管理
创新扩散
作者
Ravikumar Kasinathan,Ramkumar Kasinathan,Dimplekumar Chalishajar
标识
DOI:10.1080/17442508.2024.2430579
摘要
This paper shows that a mean-field neutral stochastic integrodifferential equation (NSIDEs) with finite delay, driven by a fractional Brownian motion (fBm) with Hurst parameter H>12, has a mild solution that exists and is unique. We also demonstrate the global attracting sets and the mild solution's exponential decay. Prior to this work, the mean-field neutral stochastic functional differential equation's exponential decay and global attractive sets were not taken into account. To demonstrate the application of our findings, an example is given. The conclusion mentions the intriguing upcoming work.
科研通智能强力驱动
Strongly Powered by AbleSci AI