A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer

前列腺癌 医学 前列腺切除术 正电子发射断层摄影术 谷氨酸羧肽酶Ⅱ 前列腺 核医学 医学物理学 放射科 人工智能 肿瘤科 癌症 内科学 计算机科学
作者
Jianliang Liu,Thomas P. Cundy,Dixon Woon,N.B. Desai,Marimuthu Palaniswami,Nathan Lawrentschuk
出处
期刊:BJUI [Wiley]
卷期号:134 (5): 714-722 被引量:4
标识
DOI:10.1111/bju.16412
摘要

Objectives To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate‐specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy). Materials and Methods This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: ‘artificial intelligence’, ‘prostate cancer’, and ‘PSMA PET’. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used. Results Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high‐grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non‐PSMA‐avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume. Conclusion Although the current state of AI differentiating high‐grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
称心元枫发布了新的文献求助10
1秒前
1秒前
李lj发布了新的文献求助10
2秒前
2秒前
2秒前
yangxt-iga发布了新的文献求助10
2秒前
沈雨琦完成签到,获得积分20
2秒前
站住辣条发布了新的文献求助10
2秒前
2秒前
IceyCNZ完成签到,获得积分10
3秒前
lefcard完成签到,获得积分10
3秒前
波特卡斯D艾斯完成签到 ,获得积分10
4秒前
mia发布了新的文献求助10
4秒前
tcf完成签到,获得积分10
4秒前
传奇3应助天天看文献采纳,获得10
4秒前
佟佟完成签到 ,获得积分10
4秒前
CCC发布了新的文献求助10
5秒前
5秒前
碧蓝歌曲完成签到,获得积分10
6秒前
Smile:)发布了新的文献求助10
6秒前
lixm发布了新的文献求助10
6秒前
Jerry发布了新的文献求助10
7秒前
小谢发布了新的文献求助10
7秒前
7秒前
充电宝应助太渊采纳,获得10
7秒前
符聪发布了新的文献求助10
7秒前
10秒前
jia0完成签到,获得积分10
10秒前
范不上完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
万能图书馆应助yanziwu94采纳,获得10
11秒前
文献互助1完成签到,获得积分10
11秒前
论太刀虾完成签到,获得积分10
12秒前
言者完成签到,获得积分10
12秒前
爆米花应助重要的夏天采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576530
求助须知:如何正确求助?哪些是违规求助? 3995739
关于积分的说明 12369777
捐赠科研通 3669687
什么是DOI,文献DOI怎么找? 2022376
邀请新用户注册赠送积分活动 1056390
科研通“疑难数据库(出版商)”最低求助积分说明 943637