A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer

前列腺癌 医学 前列腺切除术 正电子发射断层摄影术 谷氨酸羧肽酶Ⅱ 前列腺 核医学 医学物理学 放射科 人工智能 肿瘤科 癌症 内科学 计算机科学
作者
Jianliang Liu,Thomas P. Cundy,Dixon Woon,N.B. Desai,Marimuthu Palaniswami,Nathan Lawrentschuk
出处
期刊:BJUI [Wiley]
卷期号:134 (5): 714-722 被引量:4
标识
DOI:10.1111/bju.16412
摘要

Objectives To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate‐specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy). Materials and Methods This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: ‘artificial intelligence’, ‘prostate cancer’, and ‘PSMA PET’. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used. Results Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high‐grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non‐PSMA‐avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume. Conclusion Although the current state of AI differentiating high‐grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
zoey完成签到 ,获得积分10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
科研通AI2S应助高兴的海亦采纳,获得10
刚刚
1秒前
1秒前
1秒前
JamesPei应助飘逸颜采纳,获得10
1秒前
mingmingjiu完成签到,获得积分10
3秒前
雪玲呀完成签到 ,获得积分10
3秒前
高傲小子发布了新的文献求助30
4秒前
jzc发布了新的文献求助10
5秒前
6秒前
重要的香发布了新的文献求助30
6秒前
欣喜的香彤完成签到,获得积分10
7秒前
滕滕完成签到,获得积分10
8秒前
伊芷发布了新的文献求助10
8秒前
安详的小凝完成签到,获得积分10
9秒前
pcr发布了新的文献求助10
10秒前
11秒前
11秒前
太阳当空照完成签到,获得积分10
11秒前
jsh完成签到,获得积分10
11秒前
12秒前
Akim应助小v的格洛米采纳,获得10
12秒前
Abfhb关注了科研通微信公众号
13秒前
完美世界应助酷猫采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
小胡同学发布了新的文献求助10
16秒前
aaainon完成签到 ,获得积分10
17秒前
17秒前
17秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337