A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer

前列腺癌 医学 前列腺切除术 正电子发射断层摄影术 谷氨酸羧肽酶Ⅱ 前列腺 核医学 医学物理学 放射科 人工智能 肿瘤科 癌症 内科学 计算机科学
作者
Jianliang Liu,Thomas P. Cundy,Dixon Woon,N.B. Desai,Marimuthu Palaniswami,Nathan Lawrentschuk
出处
期刊:BJUI [Wiley]
卷期号:134 (5): 714-722 被引量:4
标识
DOI:10.1111/bju.16412
摘要

Objectives To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate‐specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy). Materials and Methods This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: ‘artificial intelligence’, ‘prostate cancer’, and ‘PSMA PET’. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used. Results Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high‐grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non‐PSMA‐avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume. Conclusion Although the current state of AI differentiating high‐grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
坦率的匪应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
czh应助科研通管家采纳,获得10
刚刚
CAOHOU应助科研通管家采纳,获得10
刚刚
lii应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
彭于彦祖应助科研通管家采纳,获得30
刚刚
丘比特应助科研通管家采纳,获得10
1秒前
善学以致用应助shadow采纳,获得10
1秒前
skyer应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得20
1秒前
1秒前
musejie应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
CAOHOU应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
番番完成签到,获得积分10
2秒前
共享精神应助senhoo采纳,获得10
3秒前
斯文的白玉完成签到,获得积分10
3秒前
4秒前
tk完成签到 ,获得积分10
4秒前
田様应助诸道罡采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
小王同学完成签到 ,获得积分10
6秒前
恐龙让梨发布了新的文献求助10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988786
求助须知:如何正确求助?哪些是违规求助? 3531116
关于积分的说明 11252493
捐赠科研通 3269766
什么是DOI,文献DOI怎么找? 1804771
邀请新用户注册赠送积分活动 881870
科研通“疑难数据库(出版商)”最低求助积分说明 809021