A systematic review on artificial intelligence evaluating PSMA PET scan for intraprostatic cancer

前列腺癌 医学 前列腺切除术 正电子发射断层摄影术 谷氨酸羧肽酶Ⅱ 前列腺 核医学 医学物理学 放射科 人工智能 肿瘤科 癌症 内科学 计算机科学
作者
Jianliang Liu,Thomas P. Cundy,Dixon Woon,N.B. Desai,Marimuthu Palaniswami,Nathan Lawrentschuk
出处
期刊:BJUI [Wiley]
卷期号:134 (5): 714-722 被引量:1
标识
DOI:10.1111/bju.16412
摘要

Objectives To assess artificial intelligence (AI) ability to evaluate intraprostatic prostate cancer (PCa) on prostate‐specific membrane antigen positron emission tomography (PSMA PET) scans prior to active treatment (radiotherapy or prostatectomy). Materials and Methods This systematic review was registered on the International Prospective Register of Systematic Reviews (PROSPERO identifier: CRD42023438706). A search was performed on Medline, Embase, Web of Science, and Engineering Village with the following terms: ‘artificial intelligence’, ‘prostate cancer’, and ‘PSMA PET’. All articles published up to February 2024 were considered. Studies were included if patients underwent PSMA PET scan to evaluate intraprostatic lesions prior to active treatment. The two authors independently evaluated titles, abstracts, and full text. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used. Results Our search yield 948 articles, of which 14 were eligible for inclusion. Eight studies met the primary endpoint of differentiating high‐grade PCa. Differentiating between International Society of Urological Pathology (ISUP) Grade Group (GG) ≥3 PCa had an accuracy between 0.671 to 0.992, sensitivity of 0.91, specificity of 0.35. Differentiating ISUP GG ≥4 PCa had an accuracy between 0.83 and 0.88, sensitivity was 0.89, specificity was 0.87. AI could identify non‐PSMA‐avid lesions with an accuracy of 0.87, specificity of 0.85, and specificity of 0.89. Three studies demonstrated ability of AI to detect extraprostatic extensions with an area under curve between 0.70 and 0.77. Lastly, AI can automate segmentation of intraprostatic lesion and measurement of gross tumour volume. Conclusion Although the current state of AI differentiating high‐grade PCa is promising, it remains experimental and not ready for routine clinical application. Benefits of using AI to assess intraprostatic lesions on PSMA PET scans include: local staging, identifying otherwise radiologically occult lesions, standardisation and expedite reporting of PSMA PET scans. Larger, prospective, multicentre studies are needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霍山柳发布了新的文献求助10
1秒前
4秒前
klb13应助体贴的代真采纳,获得100
4秒前
4秒前
善学以致用应助likenoodles采纳,获得10
5秒前
5秒前
田様应助zdesfsfa采纳,获得10
5秒前
yuzhongdelianyi完成签到,获得积分10
6秒前
鳗鱼凡波完成签到,获得积分10
8秒前
11秒前
11秒前
earthai完成签到,获得积分10
12秒前
幸运兔发布了新的文献求助10
13秒前
旧梦如烟完成签到,获得积分10
13秒前
森sen完成签到 ,获得积分10
15秒前
15秒前
Ava应助wwt采纳,获得10
16秒前
T1unkillable完成签到 ,获得积分10
17秒前
17秒前
18秒前
20秒前
likenoodles发布了新的文献求助10
22秒前
在水一方应助xuexue采纳,获得10
22秒前
D33sama完成签到,获得积分10
24秒前
24秒前
舒适可乐发布了新的文献求助10
25秒前
26秒前
26秒前
lx完成签到 ,获得积分10
29秒前
小蘑菇应助彩色谷蕊采纳,获得10
29秒前
29秒前
30秒前
kant2023完成签到,获得积分10
31秒前
李健应助YYY采纳,获得10
32秒前
32秒前
十七完成签到 ,获得积分10
34秒前
xuexue给xuexue的求助进行了留言
34秒前
John发布了新的文献求助10
37秒前
40秒前
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574