End-to-end, decision-based, cardinality-constrained portfolio optimization

基数(数据建模) 计算机科学 文件夹 端到端原则 数学优化 投资组合优化 运筹学 分界 业务 数学 算法 人工智能 数据挖掘 财务
作者
Hassan Anis,Roy H. Kwon
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:320 (3): 739-753 被引量:1
标识
DOI:10.1016/j.ejor.2024.08.030
摘要

Portfolios employing a (factor) risk model are usually constructed using a two step process: first, the risk model parameters are estimated, then the portfolio is constructed. Recent works have shown that this decoupled approach may be improved using an integrated framework that takes the downstream portfolio optimization into account during parameter estimation. In this work we implement an integrated, end-to-end, predict-&-optimize framework to the cardinality-constrained portfolio optimization problem. To the best of our knowledge, we are the first to implement the framework to a nonlinear mixed integer programming problem. Since the feasible region of the problem is discontinuous, we are unable to directly differentiate through it. Thus, we compare three different continuous relaxations of increasing tightness to the problem which are placed as an implicit layers in a neural network. The parameters of the factor model governing the problem's covariance matrix structure are learned using a loss function that directly corresponds to the decision quality made based on the factor model's predictions. Using real world financial data, our proposed end-to-end, decision based model is compared to two decoupled alternatives. Results show significant improvements over the traditional decoupled approaches across all cardinality sizes and model variations while highlighting the need of additional research into the interplay between experimental design, problem size and structure, and relaxation tightness in a combinatorial setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿发布了新的文献求助10
2秒前
奋斗的元珊完成签到,获得积分10
2秒前
欢喜可兰发布了新的文献求助10
3秒前
shhoing应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
Cleo应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
鱼鱼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
希望天下0贩的0应助xc采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
Gauss应助科研通管家采纳,获得20
4秒前
慕青应助科研通管家采纳,获得10
4秒前
大龙哥886应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得30
5秒前
烟花应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
YUMI完成签到,获得积分10
5秒前
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559994
求助须知:如何正确求助?哪些是违规求助? 4645112
关于积分的说明 14674328
捐赠科研通 4586220
什么是DOI,文献DOI怎么找? 2516312
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841