End-to-end, decision-based, cardinality-constrained portfolio optimization

基数(数据建模) 计算机科学 文件夹 端到端原则 数学优化 投资组合优化 运筹学 分界 业务 数学 算法 人工智能 数据挖掘 财务
作者
Hassan Anis,Roy H. Kwon
出处
期刊:European Journal of Operational Research [Elsevier]
标识
DOI:10.1016/j.ejor.2024.08.030
摘要

Portfolios employing a (factor) risk model are usually constructed using a two step process: first, the risk model parameters are estimated, then the portfolio is constructed. Recent works have shown that this decoupled approach may be improved using an integrated framework that takes the downstream portfolio optimization into account during parameter estimation. In this work we implement an integrated, end-to-end, predict-&-optimize framework to the cardinality-constrained portfolio optimization problem. To the best of our knowledge, we are the first to implement the framework to a nonlinear mixed integer programming problem. Since the feasible region of the problem is discontinuous, we are unable to directly differentiate through it. Thus, we compare three different continuous relaxations of increasing tightness to the problem which are placed as an implicit layers in a neural network. The parameters of the factor model governing the problem's covariance matrix structure are learned using a loss function that directly corresponds to the decision quality made based on the factor model's predictions. Using real world financial data, our proposed end-to-end, decision based model is compared to two decoupled alternatives. Results show significant improvements over the traditional decoupled approaches across all cardinality sizes and model variations while highlighting the need of additional research into the interplay between experimental design, problem size and structure, and relaxation tightness in a combinatorial setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卷卷王发布了新的文献求助10
1秒前
1秒前
天天快乐应助phz采纳,获得10
2秒前
lili完成签到,获得积分10
3秒前
sakurai应助通~采纳,获得10
3秒前
3秒前
3秒前
柴火烧叽发布了新的文献求助10
4秒前
香蕉觅云应助内向秋寒采纳,获得10
4秒前
5秒前
5秒前
zyh完成签到,获得积分10
5秒前
5秒前
小马甲应助Anxinxin采纳,获得10
5秒前
ww发布了新的文献求助10
5秒前
这小猪真帅完成签到,获得积分10
6秒前
Hulda完成签到,获得积分10
6秒前
可靠访蕊完成签到 ,获得积分10
7秒前
深情安青应助科研小白采纳,获得10
7秒前
八八完成签到,获得积分20
8秒前
请叫我风吹麦浪应助AIA7采纳,获得10
8秒前
智齿怪物一号完成签到,获得积分10
8秒前
舒适山槐完成签到,获得积分10
8秒前
HJJHJH发布了新的文献求助10
8秒前
易哒哒发布了新的文献求助10
8秒前
ZZZpp完成签到,获得积分10
9秒前
大个应助756采纳,获得10
10秒前
11秒前
喵呜发布了新的文献求助10
11秒前
Ava应助k7采纳,获得10
11秒前
领导范儿应助cc采纳,获得10
11秒前
橘子发布了新的文献求助40
11秒前
11秒前
benben完成签到,获得积分10
12秒前
wjq完成签到,获得积分10
12秒前
12秒前
13秒前
亓亓完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794