End-to-end, decision-based, cardinality-constrained portfolio optimization

基数(数据建模) 计算机科学 文件夹 端到端原则 数学优化 投资组合优化 运筹学 分界 业务 数学 算法 人工智能 数据挖掘 财务
作者
Hassan Anis,Roy H. Kwon
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:320 (3): 739-753 被引量:1
标识
DOI:10.1016/j.ejor.2024.08.030
摘要

Portfolios employing a (factor) risk model are usually constructed using a two step process: first, the risk model parameters are estimated, then the portfolio is constructed. Recent works have shown that this decoupled approach may be improved using an integrated framework that takes the downstream portfolio optimization into account during parameter estimation. In this work we implement an integrated, end-to-end, predict-&-optimize framework to the cardinality-constrained portfolio optimization problem. To the best of our knowledge, we are the first to implement the framework to a nonlinear mixed integer programming problem. Since the feasible region of the problem is discontinuous, we are unable to directly differentiate through it. Thus, we compare three different continuous relaxations of increasing tightness to the problem which are placed as an implicit layers in a neural network. The parameters of the factor model governing the problem's covariance matrix structure are learned using a loss function that directly corresponds to the decision quality made based on the factor model's predictions. Using real world financial data, our proposed end-to-end, decision based model is compared to two decoupled alternatives. Results show significant improvements over the traditional decoupled approaches across all cardinality sizes and model variations while highlighting the need of additional research into the interplay between experimental design, problem size and structure, and relaxation tightness in a combinatorial setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
sophia完成签到,获得积分10
2秒前
2秒前
Lyp888206发布了新的文献求助10
3秒前
4秒前
ll发布了新的文献求助10
5秒前
sophia发布了新的文献求助20
5秒前
复杂绝悟发布了新的文献求助10
6秒前
7秒前
爱雪的猫发布了新的文献求助10
7秒前
7秒前
王倩倩发布了新的文献求助20
9秒前
shary完成签到,获得积分10
9秒前
甜蜜骁发布了新的文献求助30
10秒前
祖老头发布了新的文献求助10
11秒前
英俊的铭应助起司猫采纳,获得10
11秒前
Double完成签到 ,获得积分10
11秒前
科研通AI6应助不安的凡桃采纳,获得10
11秒前
Owen应助棕榈采纳,获得10
13秒前
Sakurasamada发布了新的文献求助20
13秒前
13秒前
白羊完成签到,获得积分10
14秒前
14秒前
薛之谦的猫应助任性白秋采纳,获得10
14秒前
向日葵完成签到 ,获得积分10
14秒前
Lee完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
Lee发布了新的文献求助10
18秒前
18秒前
潇洒毛给潇洒毛的求助进行了留言
19秒前
颖火虫2588发布了新的文献求助10
19秒前
20秒前
小冯发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521