清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

End-to-end, decision-based, cardinality-constrained portfolio optimization

基数(数据建模) 计算机科学 文件夹 端到端原则 数学优化 投资组合优化 运筹学 分界 业务 数学 算法 人工智能 数据挖掘 财务
作者
Hassan Anis,Roy H. Kwon
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:320 (3): 739-753 被引量:1
标识
DOI:10.1016/j.ejor.2024.08.030
摘要

Portfolios employing a (factor) risk model are usually constructed using a two step process: first, the risk model parameters are estimated, then the portfolio is constructed. Recent works have shown that this decoupled approach may be improved using an integrated framework that takes the downstream portfolio optimization into account during parameter estimation. In this work we implement an integrated, end-to-end, predict-&-optimize framework to the cardinality-constrained portfolio optimization problem. To the best of our knowledge, we are the first to implement the framework to a nonlinear mixed integer programming problem. Since the feasible region of the problem is discontinuous, we are unable to directly differentiate through it. Thus, we compare three different continuous relaxations of increasing tightness to the problem which are placed as an implicit layers in a neural network. The parameters of the factor model governing the problem's covariance matrix structure are learned using a loss function that directly corresponds to the decision quality made based on the factor model's predictions. Using real world financial data, our proposed end-to-end, decision based model is compared to two decoupled alternatives. Results show significant improvements over the traditional decoupled approaches across all cardinality sizes and model variations while highlighting the need of additional research into the interplay between experimental design, problem size and structure, and relaxation tightness in a combinatorial setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Febrine0502完成签到,获得积分10
7秒前
李振博完成签到 ,获得积分10
43秒前
1分钟前
川藏客发布了新的文献求助10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
晨曦完成签到 ,获得积分10
1分钟前
大个应助艾希德露采纳,获得10
1分钟前
yhbk完成签到 ,获得积分10
1分钟前
川藏客完成签到,获得积分10
2分钟前
科研通AI6应助lucky采纳,获得10
2分钟前
VDC发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
川藏客发布了新的文献求助10
2分钟前
yshj完成签到 ,获得积分10
2分钟前
艾希德露发布了新的文献求助10
2分钟前
lucky完成签到,获得积分10
3分钟前
lucky发布了新的文献求助10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
披着羊皮的狼完成签到 ,获得积分10
3分钟前
4分钟前
心随以动完成签到 ,获得积分10
4分钟前
修辛完成签到 ,获得积分10
4分钟前
blueskyzhi完成签到,获得积分10
4分钟前
甘sir完成签到 ,获得积分10
4分钟前
独孤家驹完成签到 ,获得积分10
4分钟前
沙海沉戈完成签到,获得积分0
5分钟前
zhangsan完成签到,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498477
求助须知:如何正确求助?哪些是违规求助? 4595686
关于积分的说明 14449610
捐赠科研通 4528576
什么是DOI,文献DOI怎么找? 2481562
邀请新用户注册赠送积分活动 1465691
关于科研通互助平台的介绍 1438454