End-to-end, decision-based, cardinality-constrained portfolio optimization

基数(数据建模) 计算机科学 文件夹 端到端原则 数学优化 投资组合优化 运筹学 分界 业务 数学 算法 人工智能 数据挖掘 财务
作者
Hassan Anis,Roy H. Kwon
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:320 (3): 739-753 被引量:1
标识
DOI:10.1016/j.ejor.2024.08.030
摘要

Portfolios employing a (factor) risk model are usually constructed using a two step process: first, the risk model parameters are estimated, then the portfolio is constructed. Recent works have shown that this decoupled approach may be improved using an integrated framework that takes the downstream portfolio optimization into account during parameter estimation. In this work we implement an integrated, end-to-end, predict-&-optimize framework to the cardinality-constrained portfolio optimization problem. To the best of our knowledge, we are the first to implement the framework to a nonlinear mixed integer programming problem. Since the feasible region of the problem is discontinuous, we are unable to directly differentiate through it. Thus, we compare three different continuous relaxations of increasing tightness to the problem which are placed as an implicit layers in a neural network. The parameters of the factor model governing the problem's covariance matrix structure are learned using a loss function that directly corresponds to the decision quality made based on the factor model's predictions. Using real world financial data, our proposed end-to-end, decision based model is compared to two decoupled alternatives. Results show significant improvements over the traditional decoupled approaches across all cardinality sizes and model variations while highlighting the need of additional research into the interplay between experimental design, problem size and structure, and relaxation tightness in a combinatorial setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Folium完成签到,获得积分10
刚刚
小二郎应助gao采纳,获得10
1秒前
Grinde发布了新的文献求助10
1秒前
俏皮晓曼发布了新的文献求助10
1秒前
隐形曼青应助姿姿采纳,获得10
1秒前
July发布了新的文献求助10
1秒前
nini应助球球的铲屎官采纳,获得20
2秒前
2秒前
归尘发布了新的文献求助10
2秒前
2秒前
3秒前
pretzel完成签到,获得积分10
3秒前
大个应助微笑翠桃采纳,获得10
3秒前
阔达远山完成签到,获得积分10
4秒前
li关注了科研通微信公众号
5秒前
lulu发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
旺旺完成签到,获得积分10
6秒前
科研通AI6应助啦啦王采纳,获得10
6秒前
wangcc完成签到 ,获得积分10
6秒前
6秒前
cc发布了新的文献求助30
7秒前
Summeryz920完成签到,获得积分10
7秒前
8秒前
9秒前
Yjy发布了新的文献求助10
9秒前
慕青应助大胆妙竹采纳,获得10
9秒前
9秒前
段非非完成签到,获得积分10
9秒前
马晓玲发布了新的文献求助10
10秒前
10秒前
在水一方应助WYYA采纳,获得10
11秒前
11秒前
11秒前
完美世界应助pretzel采纳,获得10
11秒前
石头饼关注了科研通微信公众号
11秒前
12秒前
xzccc发布了新的文献求助10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615105
求助须知:如何正确求助?哪些是违规求助? 4700011
关于积分的说明 14906187
捐赠科研通 4741141
什么是DOI,文献DOI怎么找? 2547938
邀请新用户注册赠送积分活动 1511682
关于科研通互助平台的介绍 1473736