Insights into Tiny High‐Entropy Doping Promising Efficient Sodium Storage of Na3V2(PO4)2O2F toward Sodium‐Ion Batteries

材料科学 兴奋剂 结晶学 光电子学 冶金 化学
作者
Guoshuai Su,Yongjia Wang,Jiawei Mu,Yongfeng Ren,Yue Peng,Weixiao Ji,Longwei Liang,Linrui Hou,Meng Chen,Changzhou Yuan
出处
期刊:Advanced Energy Materials [Wiley]
标识
DOI:10.1002/aenm.202403282
摘要

Abstract Both high operation voltage and theoretical capacity promise polyanion‐type fluorophosphate Na 3 V 2 (PO 4 ) 2 O 2 F as a competitive cathode toward high‐energy‐density sodium‐ion batteries (SIBs). However, the intrinsic low kinetic characteristics seriously influence its high‐power property and service life. To well address this, a creative tiny high‐entropy (HE) doping methodology is purposefully developed to fabricate nanoscale Na 3 V 1.94 (Cr, Mn, Co, Ni, Cu) 0.06 (PO 4 ) 3 O 2 F (NVPOF‐HE) as the advanced cathode materials for SIBs. The grain refinement effect induced by collaborative regulations from polyvinyl pyrrolidone and tiny HE heteroatomic doping is reasonably proposed for nanosizing particle dimension of NVPOF‐HE. Systematic experiments and theoretical calculations authenticate that the HE doping efficiently promotes the electronic/ionic transport and high‐voltage capacity contribution, and weakens the lattice expansion over Na + ‐(de)intercalation processes. Thanks to the appealing virtues mentioned here, the nano NVPOF‐HE, compared to single‐ion/dual‐ion/triple‐ion doped cases, achieves even better Na + ‐storage performance in terms of both high‐rate capacities and long‐term cycling stability. Furthermore, the NVPOF‐HE assembled full SIBs deliver a high materials‐level energy density of 463 Wh kg −1 and electrochemical stability of ≈93.8% capacity retention after 1000 cycles at 5 C rate. More essentially, the fundamental insights gained here provide a significant scientific and technological advancement in high‐performance and durable polyanionic cathodes toward next‐generation SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
w_应助学术垃圾制造者采纳,获得10
1秒前
啊七飞完成签到,获得积分10
2秒前
魏淑辉发布了新的文献求助10
3秒前
3秒前
rosalieshi应助legna采纳,获得30
4秒前
无忧应助等待鑫鹏采纳,获得10
4秒前
英勇熠彤完成签到 ,获得积分10
4秒前
4秒前
5秒前
科研通AI2S应助zhendema采纳,获得30
5秒前
yige12138发布了新的文献求助30
6秒前
小肥吴发布了新的文献求助10
7秒前
7秒前
WeiLv完成签到,获得积分10
9秒前
平淡妙梦发布了新的文献求助10
10秒前
兔子完成签到,获得积分10
10秒前
田様应助ZZ采纳,获得10
11秒前
Yziii应助科研通管家采纳,获得20
11秒前
xueler发布了新的文献求助10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
Cassie应助科研通管家采纳,获得10
12秒前
寻道图强应助科研通管家采纳,获得30
12秒前
Jasper应助chen采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
鲤鱼鸽子应助科研通管家采纳,获得10
12秒前
寻道图强应助科研通管家采纳,获得30
13秒前
o我不是高手完成签到 ,获得积分10
13秒前
思源应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得20
13秒前
852应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得30
13秒前
今后应助科研通管家采纳,获得10
13秒前
小二郎应助Ly采纳,获得10
13秒前
13秒前
李健应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074861
求助须知:如何正确求助?哪些是违规求助? 2728212
关于积分的说明 7502977
捐赠科研通 2376311
什么是DOI,文献DOI怎么找? 1259944
科研通“疑难数据库(出版商)”最低求助积分说明 610771
版权声明 597101