Systematic Review of the Effectiveness of Machine Learning Algorithms for Classifying Pain Intensity, Phenotype or Treatment Outcomes Using Electroencephalogram Data

心理信息 机器学习 科克伦图书馆 人工智能 梅德林 荟萃分析 医学 计算机科学
作者
Tyler Mari,Jessica Henderson,Michelle Maden,Sarah J Nevitt,Rui V. Duarte,Nicholas Fallon
出处
期刊:The Journal of Pain [Elsevier BV]
标识
DOI:10.1016/j.jpain.2021.07.011
摘要

Recent attempts to utilize machine learning (ML) to predict pain-related outcomes from Electroencephalogram (EEG) data demonstrate promising results. The primary aim of this review was to evaluate the effectiveness of ML algorithms for predicting pain intensity, phenotypes or treatment response from EEG. Electronic databases MEDLINE, EMBASE, Web of Science, PsycINFO and The Cochrane Library were searched. A total of 44 eligible studies were identified, with 22 presenting attempts to predict pain intensity, 15 investigating the prediction of pain phenotypes and seven assessing the prediction of treatment response. A meta-analysis was not considered appropriate for this review due to heterogeneous methods and reporting. Consequently, data were narratively synthesized. The results demonstrate that the best performing model of the individual studies allows for the prediction of pain intensity, phenotypes and treatment response with accuracies ranging between 62 to 100%, 57 to 99% and 65 to 95.24%, respectively. The results suggest that ML has the potential to effectively predict pain outcomes, which may eventually be used to assist clinical care. However, inadequate reporting and potential bias reduce confidence in the results. Future research should improve reporting standards and externally validate models to decrease bias, which would increase the feasibility of clinical translation. PERSPECTIVE: This systematic review explores the state-of-the-art machine learning methods for predicting pain intensity, phenotype or treatment response from EEG data. Results suggest that machine learning may demonstrate clinical utility, pending further research and development. Areas for improvement, including standardized processing, reporting and the need for better methodological assessment tools, are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈语蕊发布了新的文献求助10
1秒前
1秒前
英姑应助稳重火龙果采纳,获得10
1秒前
AMM应助冰阔罗采纳,获得10
2秒前
乐乐应助NL采纳,获得10
2秒前
chen完成签到 ,获得积分10
2秒前
Jennifer发布了新的文献求助10
3秒前
yff发布了新的文献求助10
3秒前
迷人啤酒完成签到,获得积分10
5秒前
滴滴完成签到,获得积分20
5秒前
Shantx完成签到,获得积分10
6秒前
侯妍冰发布了新的文献求助10
7秒前
JJ完成签到 ,获得积分10
9秒前
筱唐完成签到,获得积分10
11秒前
yff完成签到,获得积分20
12秒前
Jennifer完成签到,获得积分20
14秒前
Enoom完成签到,获得积分20
14秒前
淡淡乐巧完成签到 ,获得积分10
15秒前
燕子完成签到,获得积分10
16秒前
aqiang完成签到,获得积分10
16秒前
小蘑菇应助55555采纳,获得10
16秒前
心意关注了科研通微信公众号
17秒前
18秒前
19秒前
科研通AI2S应助科研苦笔采纳,获得10
19秒前
科研通AI5应助柔弱亦寒采纳,获得20
20秒前
传奇3应助侯妍冰采纳,获得10
20秒前
Enoom发布了新的文献求助30
21秒前
朴实巧荷完成签到 ,获得积分10
22秒前
乐乐应助kmy采纳,获得10
23秒前
zheng完成签到 ,获得积分10
23秒前
ZHUZHU发布了新的文献求助10
25秒前
玫瑰遇上奶油完成签到,获得积分10
26秒前
AGPPDY完成签到,获得积分10
26秒前
asdfqwer完成签到 ,获得积分0
26秒前
合适的落落完成签到 ,获得积分20
31秒前
H哈完成签到,获得积分10
32秒前
阿文完成签到,获得积分10
33秒前
小康学弟完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3713376
求助须知:如何正确求助?哪些是违规求助? 3261330
关于积分的说明 9917882
捐赠科研通 2975015
什么是DOI,文献DOI怎么找? 1631392
邀请新用户注册赠送积分活动 773888
科研通“疑难数据库(出版商)”最低求助积分说明 744518