已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ViA: A Novel Vision-Transformer Accelerator Based on FPGA

计算机科学 现场可编程门阵列 变压器 硬件加速 地点 计算 计算机工程 人工智能 计算机体系结构 计算机硬件 嵌入式系统 算法 电气工程 工程类 语言学 哲学 电压
作者
Teng Wang,Lei Gong,Chao Wang,Yang Yang,Yingxue Gao,Xuehai Zhou,Huaping Chen
出处
期刊:IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:41 (11): 4088-4099 被引量:16
标识
DOI:10.1109/tcad.2022.3197489
摘要

Since Google proposed Transformer in 2017, it has made significant natural language processing (NLP) development. However, the increasing cost is a large amount of calculation and parameters. Previous researchers designed and proposed some accelerator structures for transformer models in field-programmable gate array (FPGA) to deal with NLP tasks efficiently. Now, the development of Transformer has also affected computer vision (CV) and has rapidly surpassed convolution neural networks (CNNs) in various image tasks. And there are apparent differences between the image data used in CV and the sequence data in NLP. The details in the models contained with transformer units in these two fields are also different. The difference in terms of data brings about the problem of the locality. The difference in the model structure brings about the problem of path dependence, which is not noticed in the existing related accelerator design. Therefore, in this work, we propose the ViA, a novel vision transformer (ViT) accelerator architecture based on FPGA, to execute the transformer application efficiently and avoid the cost of these challenges. By analyzing the data structure in the ViT, we design an appropriate partition strategy to reduce the impact of data locality in the image and improve the efficiency of computation and memory access. Meanwhile, by observing the computing flow of the ViT, we use the half-layer mapping and throughput analysis to reduce the impact of path dependence caused by the shortcut mechanism and fully utilize hardware resources to execute the Transformer efficiently. Based on optimization strategies, we design two reuse processing engines with the internal stream, different from the previous overlap or stream design patterns. In the stage of the experiment, we implement the ViA architecture in Xilinx Alveo U50 FPGA and finally achieved ~5.2 times improvement of energy efficiency compared with NVIDIA Tesla V100, and 4–10 times improvement of performance compared with related accelerators based on FPGA, that obtained nearly 309.6 GOP/s computing performance in the peek.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
爆爆糖发布了新的文献求助30
4秒前
喵喵完成签到 ,获得积分10
5秒前
8秒前
小蘑菇应助啊倦采纳,获得10
8秒前
9秒前
大模型应助李思采纳,获得10
9秒前
fhznuli发布了新的文献求助10
12秒前
桐桐应助cxwong采纳,获得10
12秒前
sss完成签到 ,获得积分10
13秒前
Doraemon完成签到 ,获得积分10
14秒前
武勇发布了新的文献求助10
16秒前
18秒前
饭团不吃鱼完成签到,获得积分10
18秒前
19秒前
MXX完成签到 ,获得积分10
20秒前
口外彭于晏完成签到,获得积分10
20秒前
fhznuli完成签到,获得积分10
21秒前
啊倦发布了新的文献求助10
21秒前
所所应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
香菜发布了新的文献求助10
24秒前
Zzz_Carlos完成签到,获得积分10
24秒前
研友_RLNj6L完成签到,获得积分0
25秒前
27秒前
西门浩宇完成签到 ,获得积分10
27秒前
汤万天完成签到,获得积分10
27秒前
香菜完成签到,获得积分10
29秒前
orixero应助口外彭于晏采纳,获得10
30秒前
柒月完成签到,获得积分10
31秒前
快乐的星月完成签到,获得积分10
32秒前
MMay完成签到 ,获得积分10
33秒前
pl完成签到 ,获得积分10
41秒前
44秒前
江离完成签到 ,获得积分10
47秒前
炙热念双完成签到 ,获得积分10
48秒前
48秒前
研友_LwlRen完成签到 ,获得积分10
52秒前
夜话风陵杜完成签到 ,获得积分0
54秒前
懒羊羊大王完成签到 ,获得积分10
56秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310991
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516539
捐赠科研通 2619121
什么是DOI,文献DOI怎么找? 1432089
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802