聚酰亚胺
材料科学
纳米复合材料
纳米颗粒
摩擦学
铜
复合材料
磨料
变形(气象学)
图层(电子)
冶金
纳米技术
作者
Shidong Zhou,Xiaoxing Niu,Xiuli Zhang,Yuanliang Zhao
标识
DOI:10.1177/09673911221133438
摘要
The synergistic effect of silica (SiO 2 ) and copper (Cu) nanoparticles in polyimide (PI) on the friction interfacial deformation of polyethersulfone/polyimide (PES/PI) blends was studied. Results indicate that the effect of SiO 2 and Cu nanoparticles on the tribological performance of PES/PI nanocomposites is quite different from each other. The addition of SiO 2 nanoparticles into PI improves the antifriction of PES/PI nanocomposites by 24.4%, but has little effect on the wear resistance. The incorporation of Cu nanoparticles into PI enhances the wear resistance of PES/PI nanocomposites by 55.5%, but has little effect on the antifriction. PES/PI nanocomposites achieve the better comprehensive tribological performance when the content of SiO 2 and Cu is 0.8 wt and 0.2 wt%, respectively. The friction interfacial deformation analysis reveals that SiO 2 in PI improve the continuity and uniformity of deformation in friction interface and reduce the severe wear of transfer film. Cu nanoparticles in PI improves the continuity but not the ununiformity of deformation. Thus, the abrasive wear of counterpart ball is severe. The synergistic effect of SiO 2 and Cu nanoparticles in PI improves the continuity and uniformity of friction interfacial deformation, which contributes to the improvement of friction and wear of PES/PI nanocomposites.
科研通智能强力驱动
Strongly Powered by AbleSci AI