下调和上调
免疫
细胞生物学
亚细胞定位
生物
CD8型
化学
免疫学
免疫系统
生物化学
细胞质
基因
作者
Haiyan Zhang,Xiao-Jing Luo,Wei Ma,Zhiying Wu,Zhicong Zhao,Xin Pei,Xue Zhang,Chonghao Chen,Josh Haipeng Lei,Qingxia Shi,Qi Zhao,Yanxing Chen,Wenwei Wu,Zhao-Lei Zeng,Huai‐Qiang Ju,Miao‐Zhen Qiu,Jun Liu,Bin Shen,Minshan Chen,Jianjun Chen,Chu‐Xia Deng,Rui‐Hua Xu,Jiajie Hou
标识
DOI:10.1038/s41467-024-53997-6
摘要
RNA methylation is an important regulatory process to determine immune cell function but how it affects the anti-tumor activity of CD8 T cells is not fully understood. Here we show that the N6-methyladenosine (m6A) RNA reader YTHDF2 is highly expressed in early effector or effector-like CD8 T cells. We find that YTHDF2 facilitates nascent RNA synthesis, and m6A recognition is fundamental for this distinctively nuclear function of the protein, which also reinforces its autoregulation at the RNA level. Loss of YTHDF2 in T cells exacerbates tumor progression and confers unresponsiveness to PD-1 blockade in mice and in humans. In addition to initiating RNA decay that is necessary for mitochondrial fitness, YTHDF2 orchestrates chromatin changes that promote T cell polyfunctionality. YTHDF2 interacts with IKZF1/3, which is important for sustained transcription of their target genes. Accordingly, immunotherapy-induced efficacy could be largely restored in YTHDF2-deficient T cells through combinational use of IKZF1/3 inhibitor lenalidomide in a mouse model. Thus, YTHDF2 coordinates epi-transcriptional and transcriptional networks to potentiate T cell immunity, which could inform therapeutic intervention. RNA methylation has recently identified as an important regulatory mechanism governing functional cellular states, but its effect on the antitumour activity of CD8 + T cells is not fully explored. Here authors assign an essential nuclear, m6A-recognition-dependent function to YTHDF2, which, in conjunction with its regulatory role in IKZF1/3-mediated gene transcription, governs anti-tumor activity in CD8 + T cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI